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Abstract 

Grouping methods are one of the most commonly used data mining methods in banking. Their goal is to describe 

population of clients. They usually are a starting point for subsequent analyzes. The aim of the article is to 

present the results of grouping individual clients of the bank with the differential evolution algorithm. 

Differential evolution algorithm is an alternative to the commonly used k-means algorithm. Algorithm is 

generating several competing solutions in one iteration. It allows to become independent of starting vectors and 

to be more effective in searching for an optimal solution. Clustering was run with preselected continuous 

variables characterizing all individual clients (deposit, credit and investment). The calculations were run using 

computer program written in SAS (4GL/SQL). The differential evolution algorithm itself has been enriched with 

a variable that allows the selection of the optimal number of clusters. Each iteration contained proposed solutions 

(chromosomes) which were evaluated by the target function built on the CS measure proposed by Chou (Das et. 

al., 2009) . Conducted analysis showed that the algorithm correctly grouped the bank's clients. 
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1 Introduction  

In today's world more and more companies have problems with effective management of 

available data. The gap between the amount of data that is generated, stored and the degree of 

their understanding is constantly growing. According to a survey conducted by IBM among 

the representatives of the largest banks, over 40% of them have problems with the excess of 

information and the lack of appropriate tools for analyzing them (Giridhar et al., 2011). 

Grouping methods are effective in describing populations.  Many authors have studied 

these methods (Everitt et al., 2011; Jain and Dubes, 1988; Gan et al., 2007; Kaufman and 

Rousseeuw, 2005). 

Most classic grouping algorithms have two major disadvantages: 

1. Easily fall into local optima in multidimensional spaces that have multimodal 

objective functions. 
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2. The efficiency of searching for a solution depends very much on the start vectors. 

In literature, there is a description of grouping methods as a method without a supervisor, 

while most traditional algorithms require a priori knowledge of the number of clusters, which 

means that this is not a method without the interference of an outsider. On the other hand, in 

many practical applications it is impossible to provide even an approximate number of groups 

for an unknown data set. 

The limitations of classical grouping methods, including the k-means algorithm, led the 

researchers to search for new, more effective grouping methods. One of the directions for the 

development of grouping algorithms was to treat them as an optimization problem. Over the 

time, the paradigm of evolutionary computation, the relationship between optimization and 

biological evolution, has evolved. Evolutionary calculations use the power of natural selection 

and allow to use the computing power of computers for automatic optimization (Das et al., 

2009). 

 

2 Differential evolution algorithm – selected issues  

Differential evolution algorithm is part of heuristic methods, because the goal of optimization 

is not to find the exact equation describing the studied phenomenon, but to search the 

available space for solutions. These solutions are constructed using random elements. What is 

more, in one iteration of the algorithm several competing solutions are created. Subsequent 

solutions are created using similarities to the evolutionary mechanisms occurring in nature. 

These are the ones that, according to the defined objective function, are the best. The 

characteristic feature of the differential evolution algorithm is that solutions are created on the 

basis of real variable vectors, not vectors coded to zero-one sequences 

Since 1995 differential evolution algorithm (Storn, 1995; Storn and Price, 1997) drew 

practitioners' attention in optimization due to the degree of resistance, the speed of 

convergence and the accuracy of solutions for real optimization problems. The differential 

evolution algorithm has defeated many algorithms, such as genetic algorithms, evolutionary 

strategies and memetic algorithms (Das et al., 2016). 

Suppose we have a set of objects Np vectors, each has D dimensions. In addition, we 

mark 𝑷𝑿 as the current population of solutions to the optimization problem, which was 

created as an initial solution or at any subsequent stage of the algorithm's operation. 
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𝑷𝑿,𝑔 = (𝑿𝑖,𝑔), 𝑖 = 0,1, … ,𝑁𝑝 − 1, 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥  (1) 

𝑿𝑖,𝑔 = (𝑥𝑗 ,𝑖,𝑔), 𝑗 = 0,1, … , 𝐷 − 1. (2) 

Index𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥  denotes the generation to which the vector belongs. Each vector is 

assigned to the corresponding population index 𝑖 = 0,1, … ,𝑁𝑝 − 1. The dimensions of the 

vector are marked by 𝑗 = 0,1, … , 𝐷 − 1. 

The differential evolution algorithm generates mutant vectors in the next step, which will 

be marked as follows: 

𝑷𝑽,𝑔 = (𝑽𝑖,𝑔), 𝑖 = 0,1, … ,𝑁𝑝 − 1, 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥  

𝑽𝑖,𝑔 = (𝑣𝑗 ,𝑖,𝑔), 𝑗 = 0,1, … , 𝐷 − 1. 

(3) 

(4) 

However, the vectors after crossover will be marked as follows: 

𝑷𝑼,𝑔 = (𝑼𝑖,𝑔), 𝑖 = 0,1, … ,𝑁𝑝 − 1, 𝑔 = 0,1, … , 𝑔𝑚𝑎𝑥  

𝑼𝑖,𝑔 = (𝑢𝑗 ,𝑖,𝑔), 𝑗 = 0,1, … , 𝐷 − 1. 

(5) 

(6) 

The first stage, i.e. setting the initial vectors, consists in generating starting vectors. Initial 

parameters (for g=0) are set within limits that correspond to a range that is acceptable for the 

intended solution. Therefore, if j-th the search task parameter has ranges marked as 𝑥𝑚𝑖𝑛 ,𝑗  and 

𝑥𝑚𝑎𝑥 ,𝑗  and 𝑟𝑎𝑛𝑑𝑖,𝑗 (0,1) means j-th realizations of a uniform distribution from the range from 

0 to 1 for i-th vector then can be determined j-th component i-th population element, as: 

𝑥𝑖,𝑗  0 = 𝑥𝑚𝑖𝑛 ,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗  0,1 ∗  𝑥𝑚𝑎𝑥 ,𝑗 − 𝑥𝑚𝑖𝑛 ,𝑗  . (7) 

The differential evolution algorithm searches for the global optimum in D-dimentional 

continuous hyperspace. It starts with a randomly selectedpopulation NpD-dimensional values 

of parameter vectors. Each vector, also known as genome / chromosome, is a proposed 

solution in a multidimensional optimization issue. The next generations of solutions in the 

differential evolution are marked as 𝑔 = 0,1,2, … , 𝑔, 𝑔 + 1. 

The vector parameters may change with the appearance of new generations, therefore the 

notation for which it will be accepted, for which𝑖-th population vector for the current 

generation over time (g=g) as: 

𝑋 𝑖 𝑔 = [𝑥1,1 𝑔 , 𝑥𝑖,2 𝑔 ,… , 𝑥𝑖,𝐷 𝑔 ]
𝑇 (8) 

where i=1,2,…,Np. 
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Mutation means a sudden change in the characteristics of the chromosome gene. In the 

context of evolutionary computation, a mutation means a change or disorder of a random 

component. Most evolutionary algorithms simulate the effect of mutations through the 

additivity of the component generated with a given probability distribution. In the differential 

evolution algorithm, a uniform distribution of the vector of the form differences was used: 

∆𝑋 𝑟2,𝑟3 = (𝑋 𝑟2 − 𝑋 𝑟3). (9) 

In the differential evolution algorithm, the mutation creates a successor vector V   i g  for 

changing the population elementX   i g  in every generation or iteration of the algorithm. 

To create a vectorV   i t for each i-th element of the current population, the other three 

disjoint vectors X   r1
i  g , X   r2

i  g , X   r3
i  g  are randomly selected from the current population. 

Indexes r1
i , r2

i , r3
i  are mutually exclusive integers selected from a range [1,NP], which are also 

different from the index and the base vector. Indexes are generated randomly for each mutated 

vector. Then, the difference of any two of the three vectors is scaled by the number F and 

added to the third vector. In this way, we get a vector V   i g  expressed as: 

𝑉  𝑖 𝑔 = 𝑋 𝑟1
𝑖  𝑔 + 𝐹. (𝑋 𝑟2

𝑖  𝑔 − 𝑋 𝑟3
𝑖 (𝑔)). (10) 

The mutation scheme shows different ways of differentiating the proposed solutions. 

The crossover operation is used to increase the diversity of the population of solutions. 

Crossing takes place after generating a donor vector through a mutation. The algorithms of 

the differential evolution family use two intersection schemes - exponential and binomial 

(zero-one). The donor vector lists the components with the target vector𝑋 𝑖 𝑔 to create a trial 

vector 

𝑈   𝑖 𝑔 = [𝑢1,1 𝑔 , 𝑢𝑖,2 𝑔 , … , 𝑢𝑖,𝐷 𝑔 ]
𝑇. (11) 

In exponential crossover, we first select a random integer n from range [0,D-1]. The 

drawn number is the starting point for the target vector from which the components are 

crossed with the donor vector. An integer L is also selected from range[1,D]. L indicates the 

number of components in which the donor vector is involved. After selection n and L trial 

vector takes the form: 

𝑢𝑖,𝑗  𝑔 =  
𝑣𝑖,𝑗  𝑔 𝑑𝑙𝑎𝑗 =  𝑛 𝐷 ,  𝑛 + 1 𝐷 , … ,  𝑛 + 𝐿 − 1 𝐷

𝑥𝑖,𝑗  𝑔 , 𝑓𝑜𝑟 𝑜𝑡𝑕𝑒𝑟 𝑗 ∈ [0, 𝐷 − 1]
  (12) 
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where the intervals denote the module modulo function D. Integer L is drawn from the 

sequence [1,2,…,D] according to the following pseudocode: 

L=0; 

Do 

{ 

L=L+1; 

} while (rand(0,1)<CR) AND (L<D)); 

As a result, the probability 𝐿 ≥ 𝑣 = (𝐶𝑅)𝑣−1 for any 𝑣 > 0. Crossover rate (CR) is a 

parameter the same as F. For each donor vector, a new set n and L must be drawn as 

described above. 

On the other hand, binomial crossover is carried out for each D variables each time,  when 

the number selected is from 0 to 1 is less than or equal to the value CR. In this case, the 

number of parameters inherited from the donor has a very similar distribution to the binomial 

one. This scheme can be represented in the following way: 

𝑢𝑖,𝑗 ,𝑔 =  
𝑣𝑖,𝑗 ,g , 𝑗𝑒ś𝑙𝑖 (𝑟𝑎𝑛𝑑𝑖,𝑗  0,1 ≤ C𝑅𝑙𝑢𝑏𝑗 = 𝑗𝑟𝑎𝑛𝑑 )

𝑥𝑖,𝑗 ,g , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (13) 

where 𝑟𝑎𝑛𝑑𝑖,𝑗  0,1  ∈  0,1 is a randomly drawn number that is generated for every j-th of the 

i-th parameter of the vector. 𝑗𝑟𝑎𝑛𝑑  ∈  1,2, … , 𝐷  is a randomly selected index that ensures that 

U   i,g  contains at least one component from the vectorV   i,g . 

This is determined once for each vector in a given generation. CR is an estimate of true 

probability pCr  the event that the component of the sample vector will be inherited from the 

parent. It may also happen that in the two-dimensional search space, three possible test 

vectors can be the result of one-dimensional mating of the mutant / donor vector 𝑉  𝑖(𝑔) with 

the target vector𝑋 𝑖(𝑔). Trial vectors: 

a) 𝑈   𝑖 𝑔 = V   i g  both components𝑈   𝑖 𝑔  inherited from the vector V   i g  

b) 𝑈   𝑖 ′ 𝑔 = 𝑉  𝑖 𝑔  one component (j=1) comes from vector 𝑉  𝑖 𝑔 , second (j=2) from vector 

𝑋𝑖 𝑡  

c) 𝑈   𝑖 ′′ 𝑔 = V   i g  one component (j=1) comes from vector 𝑋𝑖 𝑔 , second (j=2) from vector 

V   i g  

The last stage of the differential evolution algorithm is selection, i.e. the choice between 

the vector𝑋 𝑖 𝑔  and a newly designated test vector𝑈   𝑖 𝑔 . The decision which of the two 

vectors will survive in the next generation g+1 depends on the value of the matching function. 
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If the values of the matching function for the sample vector is better than the value of the 

target vector, the existing vector is replaced with the new vector.  

𝑋 𝑖 𝑔 + 1 =  
𝑈   𝑖 𝑔 𝑑𝑙𝑎𝑓  𝑈   𝑖 𝑔  ≤ 𝑓  𝑋 𝑖 𝑔  

𝑋 𝑖 𝑔 𝑑𝑙𝑎𝑓  𝑈   𝑖 𝑔  > 𝑓  𝑋 𝑖 𝑔  

  (14) 

where 𝑓 𝑋   is a minimized function. The selection process consists in selecting one of two 

variants. The adjustment of population members improves in subsequent generations or 

remains unchanged, but never deteriorates. 

CS (Candidate Solution) Measureproposed by Chou (Das et al., 2009) is an objective 

function in this study. Group centroids are determined as the average vectors belonging to a 

given cluster 

𝑚 𝑖 =
1

𝑁𝑖
 𝑍 𝑗
𝑍 𝑗∈𝐶𝑖

 (15) 

The distance between two points 𝑍 𝑝and 𝑍 𝑦 is marked as𝑑 𝑍 𝑝 , 𝑍 𝑦 . Then the CS measure can 

be defined as: 

𝐶𝑆 𝑘 =

1

𝑘
  

1

 C i  
 max𝑍 𝑦∈𝐶𝑖

{𝑑 𝑍 𝑝 , 𝑍 𝑦 }
𝑍 𝑦∈𝐶𝑖

 𝑘
𝑖=1

1

𝑘
  min

𝑗 ∈𝑘,𝑗≠𝑖
𝑑 𝑚 𝑖 , 𝑚 𝑗   

𝑘
𝑖=1

=

  
1

 C i  
 max𝑍 𝑦∈𝐶𝑖

{𝑑 𝑍 𝑝 , 𝑍 𝑦 }
𝑍 𝑦∈𝐶𝑖

 𝑘
𝑖=1

  min
𝑗∈𝑘,𝑗≠𝑖

𝑑 𝑚 𝑖 , 𝑚 𝑗   
𝑘
𝑖=1

 
(16) 

The measure is a function of the ratio of the amount of intra-group dispersion and the 

separation between groups. The CS measure is more effective at clusters with different 

density and / or different sizes than other measures.  

 

3 Design of the study  

The database of commercial bank clients was used for the study. It has been limited to the part 

of the population for which the actions taken will translate in the maximum way into business 

benefits. In particular, clients meet the following criteria: individual clients with active 

products, aged from 18 to 75 years, not being bank employees, with positive marketing 

consent, without delays in repayment of loan products. 

As for the variables used for the study, the choice was not accidental. Variables selected 

for this study can be evaluated for each customer regardless of whether they have deposit, 

credit or investment products. Pre-processing of data allowed to eliminate outliers from the 

studied population. Due to the strong right-side skewness of the variables, a transformation 
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was made by adding a constant 0.001, and then their logarithmisation. As a result, the 

resulting distributions of variables are more symmetrical. 

The final set of variables that took part in the study is presented below:  

- ZM1 (DEPOZYTY) -  Total funds on accounts and deposits in thousands of PLN, 

- ZM2 (INWESTYCJE) - Total funds in investment products in thousands of PLN, 

- ZM3 (LUDNOSC) -  number of inhabitants, based on the city from the 

correspondence address and data published by the Statistics Poland, 

- ZM4 (KREDYTY) - amount of bank loans taken in thousands of PLN, 

- ZM5 (SALDO_BIK) - balance for repayment on credit products outside the bank, 

based on inquiries from BIK in thousands of PLN, 

- ZM6 (AVG_TRN_INCOMING_ALL_3M) - average monthly income on 

customer's accounts in the last 3 months in thousands of PLN, 

- ZM7 (AVG_TRN_INCOMING_CLEAN_3M) –cleaned average monthly income on 

customer's accounts in the last 3 months in thousands of PLN. Transactions between 

accounts belonging to the customer are not taken into account, 

- ZM8 (AVG_TRN_OUTGOING_ALL_3M) -  average monthly outflows from 

customer accounts in the last 3 months in thousands of PLN, 

- ZM9 (AVG_TRN_OUTGOING_CLEAN_3M) – cleaned monthly average outflows 

from customer accounts in the last 3 months in thousands of PLN. Transactions 

between accounts belonging to the customer are not taken into account, 

- ZM10 (AVG_TRN_OUT_DEBIT_3M) - average monthly transaction amount on the 

debit card from the last 3 months (cash and non-cash transactions) in thousands of 

PLN, 

- ZM11 (AVG_TRN_OUT_CREDIT_3M) - monthly average amount of credit card 

transactions from the last 3 months (cash and non-cash transactions)  in thousands of 

PLN, 

- ZM12 (WIEK_LATA) - customer's age in years, 

- ZM13 (STAZ_LATA) - customer experience in years. 

Table 1 outlines constants used in the algorithm. 

For the purpose of optimizing number of centroids dimensional matrix is created MRc,k,z, 

where c means the number of chromosomes, k means the number of clusters, z means the 

number of variables. Number of variables is increased by 1. An additional variable is used to 

store information on whether the cluster is active or inactive in the given iteration. Values for 

individual matrix elements are generated according to the formula (7). An additional variable 



The 12th
 Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena 

 
 

127 

 

indicating focus activation is determined based on the rule: If the randomly generated number 

from the range 0 to 1 is smaller than the activation constant (SA) then the variable takes the 

value 0, otherwise it takes the value 1. 

 

Table 1. Constants used in the study. 

Constant  value Description of the constant 

LZ 13 Number of variables describing the client 

LC 13 Number of chromosomes 

LK 15 Maximum number of clusters 

SA 0.2 Constant activation of the vector 

F 0.7 Mutation operator 

Iterations 15 Number of iterations 

CR 1 Crossover rate 

 

4 Results of empirical analyses  

The smallest value of the CS function in the fifteenth iteration was obtained for chromosome 

number 3. This solution was chosen as the optimal solution. 

Table 2 contains the characteristics of chromosome 3, which divided the surveyed 

population of the bank's clients into 9 groups (the maximum number of groups on which the 

population could be divided into 13). 

The results of grouping in Table 2 indicate that the distinguished groups are characterized 

by nonequal distribution of the number of clients in groups. Group 8 is more selective and 

gathers 45.71% of clients, group 4 contains 22.11% of clients, and the third group 6 includes 

14.41% of clients. The three mentioned groups gather over 80% of the surveyed population. 

More detailed characteristics of the distinguished groups of clients are presented in the 

Table 3, which contains average values of features in individual groups. The data presented in 

Table 3 indicate that individual groups differ from each other. Thanks to the knowledge of 

average values for particular groups, it is possible to indicate groups of transactionally active 

customers (groups 14,5,6) and customers who use accounts less frequently (group 3,8,4,1). 

The most-affluent group of customers with very high means is without a doubt group number 

14. 
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Table 2. Numbers and share of groups for chromosome 3. 

Group  No of Clients % of total 

8 92 109 45.71% 

4 44 545 22.11% 

6 29 047 14.41% 

3 20 003 9.93% 

5 5 476 2.72% 

14 3 582 1.78% 

1 2 839 1.41% 

15 2 075 1.03% 

12 1 832 0.91% 

SUM 201508 100.00% 

 

Table 3. Average values of variables ZM1-ZM13 for clusters obtained by the differential 

evolution algorithm. 

Cluster ZM1 ZM2 ZM3 ZM4 ZM5 ZM6 ZM7 ZM8 ZM9 ZM10 ZM11 ZM12 ZM13 

8 8 0 452 137 88 5 4 5 3 0 0 43 5 

4 2 5 273 5 1 5 4 5 4 0 0 43 6 

6 20 10 500 182 146 22 17 22 17 1 0 42 6 

3 28 4 453 7 45 1 1 1 0 0 0 47 6 

5 60 61 627 325 0 26 20 27 19 0 1 41 6 

14 113 97 758 414 144 113 84 106 73 2 1 42 6 

1 20 67 473 223 114 4 3 4 2 0 0 43 6 

15 24 48 321 264 10 10 8 7 5 0 0 41 5 

12 0 2 131 7 117 15 11 18 15 0 0 41 3 

 

Thanks to the use of the differential evolution algorithm to group the bank's clients, we 

can get information on how many natural groups exists in a short time. Moreover, the number 

of groups has been calculated, not imposed in advance. The algorithm evaluated and 

compared obtained results for other candidate solutions in subsequent iterations, recognizing 

according to the values of the objective function that the optimal division of this group of 

customers contains 9 clusters. 
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Conclusions 

The differential evolution algorithm is a promising approach to optimization, because it 

generates a whole set of solutions that can be easily adapted to carry out the optimization 

again. The fact of keeping a set of solutions, not only the best solution, allows faster 

adaptation to new conditions using the previously made calculations. It is resistant in terms of 

the choice of parameters as well as the regularity in which it finds the global optimum. 

Algorithm is a direct search solution method, versatile enough to solve problems whose 

objective function lacks the analytical description needed to determine the gradient. The 

algorithm is also very simple to use and modify. 

Evolutionary algorithms, in particular the differential evolution algorithm do well with 

continuous variables when grouping clients. Customers from particular groups can be 

synthetically described by the mean vector for variables used in clustering. They allow to 

effectively separate customers with the same basket of products, but differing in the level of 

individual variables. 
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