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Abstract 

This paper critically discusses the most promising, known from the literature, approaches to analysis of 

robustness in the functional time series setup. We also propose our own method of detecting functional outliers 

appealing to the generalized Young inverse function. The method is dedicated for detecting a certain kind of 

shape outliers. In empirical example we study day and night air pollution with PM10 in Katowice in 2016. 
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1 Introduction  

Robust statistics studies various relationships between majorities and influential minorities of 

observations within data sets and within underlying statistical models. These studies involves 

behaviour of estimators or tests when samples come from data generating processes, which 

are in neighbourhoods (minority) of assumed models (majority). Having at our disposal a 

reasonable definition of majority as a by-product one may define an outlier as observation 

departing from the majority in a certain justified way (Maronna et al., 2006). Although main 

aim of robust statistics is to propose robust procedures, i.e., techniques having good properties 

at the assumed model as well as in case of a slight departure from the model, a detection of 

outliers may be even more important issue in a context of developing new theories explaining 

economic phenomena. Notice that departure from the main pattern may signal problems with 

an old theory or a completely new phenomenon. In practice, outliers detection procedures 

may be important in a context of safety systems development or e-economy monitoring. 

Many economic phenomena may be treated as functional time series (FTS) – series of 

functions of a certain continuum representing, for example, time, temperature, interest rate, an 

aversion to risk, age of a credit applicant etc. Assuming a certain degree of regularity as to 
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data generating the phenomena, one can effectively model, conduct statistical inference and 

predict them within a framework offered by relatively new discipline of multidimensional 

statistics called functional data analysis (FDA). Unfortunately, observed empirical data sets 

very often manifest departure from the assumed regularity in a form of existence of outliers 

within data. These facts may rise doubts as to credibility of applications of functional 

generalizations of standard time series techniques like ARMA modelling (Horváth and 

Kokoszka, 2012; Górecki et al., 2017). It should be stressed however, that although there are 

known effective techniques of coping with outliers in one- and multidimensional cases, the 

situation is far from satisfactory in classical time series setting (Maronna et al., 2006; Galeano 

et al., 2006). Within the FDA we additionally face new challenges for development of robust 

statistical procedures. We have to cope with completely new classes of outliers. 

Unfortunately, straightforward generalizations of simple outliers detection tools, like the 

boxplot or the quantile-quantile plot, do not exist. 

This paper critically discusses the most promising approaches, known from the literature, 

to outliers detection appearing in the FDA and focuses on selected challenges for the FTS 

framework. We also present our own proposal related to the generalized Young inverse 

function. The method is designed for detecting a certain kind of shape outliers. In an 

empirical example we study day and night air pollution with PM10 in Katowice in 2016. A 

reasonable outliers detecting algorithm in this context should indicate anomalies which may 

give us an insight into relationships between various factors and events influencing air quality 

and in consequence leading to a better local pro-ecological regulations. The rest of the paper 

is organized as follows. In Section 2 we list basic types of outliers in the FDS setup and 

briefly indicate the best detection procedures known from literature. We also discuss their 

drawbacks and challenges. In Section 3 we introduce our original procedure for detecting of 

certain kind of shape outliers. In Section 4 selected challenges in the FTS setup are discussed. 

Section 5 presents a comparison of the procedures in the empirical example. Section 6 

consists of some conclusions and summary. 

 

2 Outliers in functional data analysis setup 

Within the FDA, functional data are considered as sample observations of random functions, 

i.e., random elements of certain function space. In general, such spaces are typically 

considered to be infinite dimensional, real and separable Banach or Hilbert spaces (Horváth 

and Kokoszka, 2012). In empirical studies we observe discrete noisy data, often appearing in 

unequally spaced time points. A first step in the analysis is to transform these data into 
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regular, smooth functions (see Horváth and Kokoszka, 2012, and references therein). Another 

important task that usually occurs during the pre-processing stage is the analysis of variability 

and splitting it into what is called phase variability and amplitude variability. The distinction 

among these two kinds of variability is a significant feature of FDA, as it does not have any 

counterpart in univariate or multivariate analysis (see Tarabelloni, 2017, and references 

therein). Referring to these two kinds of variability, one defines two types of outliers namely 

shape outliers and magnitude outliers, having in general different effect on the FDA 

procedures. The first taxonomy of functional outliers was proposed in Hubert et al. (2015). 

Although a formal and commonly accepted definition of functional outlier is still missing in 

the literature, a discrimination between amplitude and phase variability inspired the main and 

widely accepted distinction between the two kinds of outliers, i.e. magnitude and shape 

outliers. The first are related to amplitude, and are a direct analogue of the outlyingness 

concept in the multivariate context, while the second are related to phase variability, hence 

they are completely new and do not have a direct counterpart in classical statistics. The 

different nature of such outliers motivates researchers to propose various tools to detect and 

handle with them.  

The most popular method designed for shape outliers detection is based on a concept of 

outliergram proposed in Arribas-Gil and Romo (2014) and intensively studied, for example, 

in Tarabelloni (2017). The method is rooted in a certain interesting property of the modified 

band depth of functional observations (López-Pintado and Romo, 2009). The best method of 

magnitude outliers detection is based on the functional boxplot proposed in Sun and Genton 

(2011), and further improved in Tarabelloni (2017). It is worth stressing that in practice a 

dataset may be affected by both magnitude and shape outliers, and a first step of an analysis is 

to separate them.  

The boxplot, a well-known one-dimensional visualization technique, is used for detecting 

outliers when assuming normality. Under normality, within an interval [Q1-

F*IQR;Q3+F*IQR], where Q1,Q3,IQR are correspondingly the first quartile, the third 

quartile and the interquartile range, and for F=1.5 we have about 0.99 probability mass. Points 

outside that interval are treated as outliers. Clearly, atypical observations can be either 

genuine but rare outcomes of the random process generating data, or can be corrupted data, 

due to a possible contamination of the sample. In a relation to this idea in a functional case, 

Sun and Genton (2011) proposed to assume a Gaussian process and choose F so that only 

fraction of 1% of the functions was flagged as outliers. Unfortunately, as in the functional 

case an analytic expression for F cannot be directly derived, a relevant resampling procedure 
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must be used. Since Gaussian functional data are far more complex than standard normal 

random variables, the procedure should be designed to take into account the first and the 

second moment of the dataset, i.e., the mean and covariance functions. Therefore, the 

adjustment process must be data-driven and has to be repeated for each dataset. Tarabelloni 

(2017) has recently proposed to use certain robust estimators and then to use bootstrap 

method for estimating appropriate quantiles and value for F. His method has been supported 

with a free roahd R package. 

 

3 Our proposal using boxplot for Young inverse functions 

Although the outliergram indicates well outliers belonging to a rich family of shape outliers, it 

lacks a sufficient precision of identification of type of departure of observation from a 

majority of observations, as it has been pointed out in Nagy et al. (2017). The sensitivity for 

types of outlyigness is especially important for developing new economic theories and 

applications, i.e., the outlying trajectory of a country development may be treated as incentive 

for developing a more general development theory that explains the root-cause of that 

trajectory. This drawback of the outliergram motivates us to propose an original method 

underlying a certain kind of shape “outlyingness in variation”, frequently studied in 

economics (business cycle analysis). We aim at proposing a method, which is less 

computationally sophisticated than methods proposed in Nagy et al. (2017).  

Let :[ , ] [ , ] a b c d  be any real function (called a parent function). A function 

:[ , ] [ , ] c d a b  defined for any number [ , ]y c d  with a formula 

( ) min{ [ , ]: ( ) }y x a b x y     

we call generalized Young inverse function of function  . 

Let a functional data  j  be defined on a finite number of knots, i.e., 

1 1:{ , , } { , , }   
i mj j jx x y y . 

Therefore, an empirical generalized Young inverse function  j , namely, 

1 1 1: min{ , , },max{ , , } { , , }      m m ij j j jy y y y x x  can be effectively defined for any real 

number 1 1min{ , , },max{ , , }    m mj jy y y y y  with a formula: 

 1( ) min { , , }: ( ) .    
ij jy x x x x y  

Furthermore, we have a functional sample 1{ ,..., .}n

nY y y  We would like to show that a 

mapping of the following form 
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1 1 1

1 1,..., 1,...,( | ,..., )( ) { [ , ]: min ( ) max },n i n i i n iD y y y z z c d y y z y  

      

where y
-1

 denotes generalized Young inverse function of function y, is a functional depth of a 

function y  with respect to the sample .nY  

An illustration of Young inverse functions is presented in Fig. 1-2.   

 

  

Fig. 1. An illustration of Young inverse 

function. 

Fig. 2. An illustration of Young inverse 

function. 

 

 

  

Fig. 3. Raw data on day and night air 

pollution with PM10 in Katowice in 2016. 

Fig. 4. Functional boxplot for air pollution 

data with PM10 in Katowice in 2016. 
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Fig. 5. Outlying day and night PM10 

pollution curves indicated by Young inverse 

function method. 

Fig. 6. Functional boxplot for Young inverse 

functions of air pollution curves in Katowice 

in 2016. 

 

PROPOSAL: Let MBD denote a sample modified band depth and let FM denote a sample 

Frainman and Muniz depth (see López-Pintado and Romo, 2009).  For a sample of functions 

1{ ,..., }n
nY y y=  take the following steps (we fix thresholds of ,MBD Y ounga a  ): 

1. Verify the null hypothesis that nY  has been generated by Gaussian law using statistic T4 of 

Jarque-Berra type test for functional data proposed in Górecki et al. (2017). If the null 

hypothesis is rejected, then go to step 2, if it is not rejected, then go to step 3. 

2. Calculate Tarabelloni (2017) version of the adjusted boxplot, and place outliers into a set 

,TO  indicating amplitude outliers. 

3. Calculate the functional boxplot using the MBD, and place functions with MBDMBD a<  

into a set ,MBDO   indicating amplitude outliers. 

4. Calculate the outliergram, and place outliers into a set ,AGO  indicating ”roughly” shape 

outliers. 

5. Calculate the generalized Young inverse functions for the sample, i.e., ( )
1

nY
-

 and then 

calculate the functional boxplot for( )
1
.nY

-
 Place observations with FM depth < Y ounga   into 

a set ,Y oungO  indicating “outliers in variation”. 

The final outliers set is ( \ (O )) O .n T MBD AG Y oungY O OČ Ç Ç   

Notice that one of the difficulties, when using a functional boxplot for outlier detection, is to 

indicate a number c such that the following formula is fulfilled: n

MBDP(MBD(y,Y )<c) , 
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where P denotes probability. In order to indicate a number c, we have to know P, which is a 

sampling distribution of functional depth and it is generally an unknown object. 

 

4 Challenges in functional time series setup 

Despite of many scientists efforts, robust statistics in area of time series analysis has much 

more gaps in comparison to uni- and multivariate statistics. The eighth chapter of the 

influential book by Maronna et al. (2006) may be treated as an introduction in this context. 

Outliers may cause bias in the model parameter estimates, and then, distort the size and power 

of statistical tests based on biased estimates. Secondly, outliers may increase the confidence 

intervals for the model parameters. Thirdly, as a consequence of the previous points, outliers 

strongly influence predictions. The best developed theory is available for ARIMA models. 

However, recent developments involve advances in coping with outliers when the series is 

generated by a general nonlinear models including as particular cases the bilinear model, the 

self-exciting threshold autoregressive (SETAR) model, the exponential autoregressive model, 

and the generalized autoregressive conditional heteroscedasticity (GARCH) models. Outliers 

in multivariate time series have been much less analysed than in the univariate case. For more 

recent researches related to our studies, let us only indicate that multivariate outliers were 

introduced in Tsay et al. (2000). Galeano et al. (2006) used projection pursuit methods to 

develop a procedure for detecting outliers, showing in particular, that testing for outliers in 

certain projection directions can be more powerful than testing the multivariate series directly. 

In view of these findings, an iterative procedure to detect and handle multiple outliers (based 

on a univariate search in these optimal directions) was proposed. The main advantage of this 

procedure is identification of outliers without prespecifying a vector ARMA model for the 

data. These ideas are in a close relation to the typical FDA framework, where due to infinite 

dimensional nature of the objects and richness of possible models, investigation of 

appropriate projections of data is a natural research tool. Note only, that even in case of 

outliers in an ARCH(1) model, we encounter two different scenarios, because an outlier can 

affect the level of a process as well as the volatility of the process. The case of a functional 

ARCH(1) model introduces the next level of complications. 

In an analogy to the one dimensional setup (Maronna et al., 2006), one may introduce 

functional additive outliers (FAO). The FAO may have adverse influence on all the steps of 

the time series analysis. Functional innovative outliers (FIO) affect a single innovation, and 

correspond to an internal change of a single innovation of the time series and are often 

associated with isolated incidents. The effects of an FIO on a series are different depending on 
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whether the series is “stationary” or not (stationarity in the FTS setup is still an open issue). 

Maronna et al. (2006) introduced also functional level shift (FLS) which is a change in the 

level of the series, and the functional temporary change (FTC) which is an exponentially 

decreasing change in the level of the series. This shows a great number of possible functional 

outliers definitions. 

The research challenge here is that the effect of a functional outlier not only depends on the 

model and the outlier size, as in the univariate case, on the interaction between the model and 

size as in multivariate case, but also on the outlier type. Additionally, as in the classical time 

series setup, the masking and swamping effects are still present, if a sequence of outlier 

patches is present in the functional time series (Galeano et al., 2006), i.e., a few outliers of the 

same magnitude appearing one after another (and forming  a path). 

 

5 Empirical study 

The first application of functional outliers detection tools to air quality monitoring may be 

found in Febrero et al. (2008). In our empirical studies we, among others, have studied day 

and night air pollution with PM10 in Katowice in a period 01.09.2016 to 28.02.2017, using 

the data from the automatic measurement station located on Kossuth’s street in Katowice and 

available from WIOŚ (http://powietrze.katowice.wios.gov.pl). The dataset consisted of 181 

curves. Fig. 3 presents raw data on day and night air pollution with PM10 in Katowice in 

2016. The same dataset has been exploited in the paper by Kosiorowski et al. (2018), where 

the authors have analyzed PM10 concentration in the air for five measurement stations in 

Silesian Region. The air pollution in the Silesian Region has been treated as a realization of a 

hierarchical functional random variable. Double functional median method has been used to 

compute a robust aggregate representing air pollution in the Silesian Region.  

Fig. 4 presents the functional boxplot for air pollution data with PM10 in Katowice in 

2016. Fig. 5 presents the outlying day and night PM10 pollution curves indicated by the 

generalized Young inverse function method and Fig. 6 shows the functional boxplot for the 

generalized Young inverse functions of air pollution curves in Katowice in 2016. Fig. 7 

presents an adjusted functional boxplot, and air pollution data. Fig. 8 presents outliergram, 

and shape outliers indicated by it in the air pollution data. The adjusted functional boxplots 

and the outliergram were prepared using roahd R package (Tarabelloni, 2017), whereas 

functional boxplots for raw data and the generalized Young curves using DepthProc R 

package (Kosiorowski and Zawadzki, 2017). 

 

http://powietrze.katowice.wios.gov.pl/
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Fig. 7. Adjusted functional boxplot, air 

pollution data. 

Fig. 8. Outliergram and outliers in air 

pollution data. 

 

Conclusions 

Reliable algorithms of functional outliers detection are desirable in a context of analysing 

various anomalies in economic phenomena described by functions. In the paper we have 

proposed a new functional outliers method and incorporated it into a decision procedure, 

which uses a known outlier detection apparatus i.e., the outliergram, the functional boxplot 

and the adjusted functional boxplot. Our approach is recommended for “outliers in variation” 

detection. Our future studies involve developing a theory for the proposed procedure as well 

as applications in optimization of a local pro-ecological policy. 
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