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Abstract 

The main goal of the paper is to obtain posterior distribution for frequency in some generalization of 

deterministic cycle model proposed by Lenart and Mazur (2016), where the autoregressive model with time-

varying almost periodic mean function was investigated with constant amplitude and frequencies. The 

assumption concerning constant amplitude in such model seems to be too strong to describe the changing nature 

of the business cycle. Hence, in this paper we assume that the mean function depends on unknown frequencies 

(related to the length of the cyclical fluctuations) in a similar way as for the almost periodic mean function 

proposed in Lenart and Mazur (2016), while the assumption concerning constant amplitude was relaxed. More 

specifically, we assume that the amplitude associated with a given frequency is time-varying and is a linear 

spline. We obtain the explicit marginal posterior distribution for vector of frequency parameters in the 

approximate model. We consider real data example concerning monthly production in industry in Poland. The 

main conclusion is that the posterior for frequency is still likely to be multimodal, but it seems that this 

multimodality is not as strong as in the deterministic cycle model with constant frequency proposed in Lenart 

and Mazur (2016). 
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1 Introduction 

The concept of stochastic cycle is very well known (see Harvey, 2004; Harvey and Jaeger, 

1993; Harvey and Trimbur, 2003; Pelagatti, 2016; Trimbur, 2006; Koopman and Shephard, 

2015; Azevedo et al., 2006; Harvey et al., 2007 and many others). This concept assumes the 

stationarity of cyclical fluctuations with zero mean function. The models with a deterministic 

cycle are not so popular as models with stochastic cycle. Following Harvey (2004) the 

concept of deterministic cycle is based on almost periodic function at time 𝑡 ∈ ℤ with one 

frequency 𝜆 ∈ (0, 𝜋) of the form  

𝑓(𝑡) = 𝑎sin(𝜆𝑡) + 𝑏cos(𝜆𝑡). 

It is widely known that above function is not flexible enough to describe the variable in 

time dynamics of business cycle. Therefore the more flexible concepts were considered. In 

Lenart and Pipień (2013) the nonparametric inference were considered under assumption that 

the conditional expectation of observed process contains almost periodic component with 
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more than one frequency. In Lenart et al. (2016) the parametric and nonparametric inference 

were considered under assumption that the mean function of cyclical process is almost 

periodic function with few frequencies. Finally in Lenart and Pipień (2015, 2017a, 2017b) 

authors consider the nonaprametric test based on subsampling approach to test the 

deterministic cycles. In Mazur (2016, 2017a, 2017b) the parametric model containing 

deterministic cycle was considered. In all above approaches the amplitude of considered 

deterministic cycle is assumed to be constant in time. This assumption seems to be strong 

taking into consideration the variable nature of the business cycle. Note that in recent few 

years the deviation cycle in Poland has flattened. 

Therefore, we investigate in this paper the time varying amplitude by considering the 

following time-varying function: 

𝑔(𝜆, 𝑡) = 𝑎(𝑡)sin(𝜆𝑡) + 𝑏(𝑡)cos(𝜆𝑡)       (1) 

of integer 𝑡 ∈ {1,2, … , 𝑛}, where 𝑎(𝑡) and 𝑏(𝑡) are a linear splines with 𝑟 + 1 knots 

{(𝑡𝑖 , 𝑎𝑖), 𝑖 = 0,1, … , 𝑟} for 𝑎(𝑡) and {(𝑡𝑖 , 𝑏𝑖), 𝑖 = 0,1,2, … , 𝑟} for 𝑏(𝑡). We assume 𝑡0 = 1 and 

𝑡𝑟 = 𝑛. Hence 

𝑎(𝑡) =  ‍

𝑟

𝑖=1

I{𝑡𝑖−1≤𝑡<𝑡𝑖}
 𝑎𝑖−1

(𝑡𝑖 − 𝑡)

𝑡𝑖 − 𝑡𝑖−1
+ 𝑎𝑖

(𝑡 − 𝑡𝑖−1)

𝑡𝑖 − 𝑡𝑖−1
 ,        𝑡 ∈ [𝑡0, 𝑡𝑟),    𝑎(𝑡𝑟) = 𝑎𝑟 , 

𝑏(𝑡) =  ‍

𝑟

𝑖=1

I{𝑡𝑖−1≤𝑡<𝑡𝑖}
 𝑏𝑖−1

(𝑡𝑖 − 𝑡)

𝑡𝑖 − 𝑡𝑖−1
+ 𝑏𝑖

(𝑡 − 𝑡𝑖−1)

𝑡𝑖 − 𝑡𝑖−1
 ,        𝑡 ∈ [𝑡0, 𝑡𝑟),    𝑏(𝑡𝑟) = 𝑏𝑟 . 

Paper is organized as follows. In section 2 we introduce the model with time-varying 

amplitude of deterministic cycle. In section 3 we investigate the Bayesian inference for such 

model and we show the closed form for marginal posterior distribution for frequency vector. 

In the last section we consider real data example concerning monthly industrial production in 

Poland. Note that in the empirical analyses of the business cycle the choice of industrial 

production series of monthly frequency seems standard.  

 

2 Model formulation 

We consider the following autoregressive model of order 𝑝: 

 Ψ(𝐿)(𝑌𝑡 − 𝑔(𝜆, 𝑡) − 𝜇) = 𝜀𝑡 , (2) 

 with time-varying mean function 𝑔(𝜆, 𝑡) + 𝜇, where Ψ(𝐿) = 1 −  ‍𝑝
𝑘=1 𝜓𝑘𝐿

𝑘  is a standard 

polynomial in autoregressive part, 𝑔(𝜆, 𝑡) is of the form (1) and 𝜀𝑡  is a white noise. Note that 

equivalently:  

 𝑌𝑡 =  ‍𝑝
𝑘=1 𝜓𝑘𝑌𝑡−𝑘 + Ψ(𝐿)[𝑔(𝜆, 𝑡) + 𝜇] + 𝜀𝑡 . 
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In the next part of this section we show that the above model can be approximated by  

𝑌𝑡 =  ‍

𝑝

𝑘=1

𝜓𝑘𝑌𝑡−𝑘 + 𝑔 (𝜆, 𝑡) + 𝜇 + 𝜀𝑡 , 

where 𝑔 (𝜆, 𝑡) is of the general form (1). 

To show this we consider a linear function 𝑠(𝑡): ℤ → ℝ passing through the points (𝑥, 𝑧𝑠) and 

(𝑦, 𝑤𝑠). In such a case we have  

𝑠(𝑡) =
𝑡(−(𝑤 − 𝑧))

𝑥 − 𝑦
−

𝑦𝑧 − 𝑤𝑥

𝑥 − 𝑦
, 

Ψ(𝐿)𝑠(𝑡)sin(𝜆𝑡) =  1 −  ‍

𝑝

𝑘=1

𝜓𝑘𝐿
𝑘 𝑠 𝑡 sin 𝜆𝑡 = 𝑠(𝑡)sin(𝜆𝑡) −  ‍

𝑝

𝑘=1

𝜓𝑘𝑠(𝑡 − 𝑘)sin(𝜆(𝑡 − 𝑘))

= 𝑤𝑠

(𝑥 − 𝑡)[sin(𝜆𝑡) −  ‍
𝑝
𝑘=1 𝜓𝑘sin(𝜆(𝑡 − 𝑘))] −  ‍

𝑝
𝑘=1 𝑘sin(𝜆(𝑡 − 𝑘))𝜓𝑘

𝑥 − 𝑦

+𝑧𝑠
(𝑡 − 𝑦)[sin(𝜆𝑡) −  ‍

𝑝
𝑘=1 𝜓𝑘sin(𝜆(𝑡 − 𝑘))] +  ‍

𝑝
𝑘=1 𝑘sin(𝜆(𝑡 − 𝑘))𝜓𝑘

𝑥 − 𝑦
.

 

 Using elementary trigonometric identities we obtain  

  ‍𝑝
𝑘=1 𝜓𝑘sin(𝜆(𝑡 − 𝑘)) = sin(𝜆𝑡)𝑓𝑠𝑠 + cos(𝜆𝑡)𝑓𝑠𝑐  

  ‍𝑝
𝑘=1 𝑘𝜓𝑘sin(𝜆(𝑡 − 𝑘)) = sin(𝜆𝑡)𝑔𝑠𝑠 + cos(𝜆𝑡)𝑔𝑠𝑐  

  ‍𝑝
𝑘=1 𝜓𝑘cos(𝜆(𝑡 − 𝑘)) = sin(𝜆𝑡)𝑓𝑐𝑠 + cos(𝜆𝑡)𝑓𝑐𝑐  

  ‍
𝑝
𝑘=1 𝑘𝜓𝑘cos(𝜆(𝑡 − 𝑘)) = sin(𝜆𝑡)𝑔𝑐𝑠 + cos(𝜆𝑡)𝑔𝑐𝑐 , 

where 𝑓𝑠𝑠 , 𝑓𝑠𝑐 , 𝑓𝑐𝑐 , 𝑓𝑐𝑠 , 𝑔𝑠𝑠 , 𝑔𝑠𝑐 , 𝑔𝑐𝑐 , 𝑔𝑐𝑠  depends only on 𝜆, 𝜓1, 𝜓2 , … , 𝜓𝑝 . In the same way we 

can decompose Ψ(𝐿)𝑐(𝑡)cos(𝜆𝑡), where 𝑐(𝑡): ℤ → ℝ is a linear function, passing through the 

points (𝑥, 𝑧𝑐) and (𝑦, 𝑤𝑐). Using now elementary algebra we get  

Ψ(𝐿)[𝑠(𝑡)sin(𝜆𝑡) + 𝑐(𝑡)cos(𝜆𝑡)] =
𝑥−𝑡

𝑥−𝑦
sin(𝜆𝑡)[1 − 𝑓𝑠𝑠 − 𝑓𝑐𝑠](𝑤𝑠 + 𝑤𝑐)

+
𝑡−𝑦

𝑥−𝑦
sin(𝜆𝑡)[1 − 𝑓𝑠𝑠 − 𝑓𝑐𝑠](𝑧𝑠 + 𝑧𝑐) +

𝑧𝑠−𝑤𝑠

𝑥−𝑦
[sin(𝜆𝑡)𝑔𝑠𝑠 + cos(𝜆𝑡)𝑔𝑠𝑐]

+
𝑥−𝑡

𝑥−𝑦
cos(𝜆𝑡)[1 − 𝑓𝑐𝑐 − 𝑓𝑠𝑐 ](𝑤𝑠 + 𝑤𝑐) +

𝑡−𝑦

𝑥−𝑦
cos(𝜆𝑡)[1 − 𝑓𝑐𝑐 − 𝑓𝑠𝑐 ](𝑧𝑠 + 𝑧𝑐)

+
𝑧𝑐−𝑤𝑐

𝑥−𝑦
[sin(𝜆𝑡)𝑔𝑐𝑠 + cos(𝜆𝑡)𝑔𝑐𝑐 ].

 (3) 

Note that  

 
𝑧𝑠−𝑤𝑠

𝑥−𝑦
[sin(𝜆𝑡)𝑔𝑠𝑠 + cos(𝜆𝑡)𝑔𝑠𝑐] =  

𝑥−𝑡

𝑥−𝑦
+

𝑡−𝑦

𝑥−𝑦
 

𝑧𝑠−𝑤𝑠

𝑥−𝑦
[sin(𝜆𝑡)𝑔𝑠𝑠 + cos(𝜆𝑡)𝑔𝑠𝑐] 

 
𝑧𝑐−𝑤𝑐

𝑥−𝑦
[sin(𝜆𝑡)𝑔𝑐𝑠 + cos(𝜆𝑡)𝑔𝑐𝑐 ] =  

𝑥−𝑡

𝑥−𝑦
+

𝑡−𝑦

𝑥−𝑦
 

𝑧𝑐−𝑤𝑐

𝑥−𝑦
[sin(𝜆𝑡)𝑔𝑐𝑠 + cos(𝜆𝑡)𝑔𝑐𝑐 ]. 

Hence, Ψ(𝐿)[𝑠(𝑡)sin(𝜆𝑡) + 𝑐(𝑡)cos(𝜆𝑡)] can be equivalently written as  
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Ψ(𝐿)[𝑠(𝑡)sin(𝜆𝑡) + 𝑐(𝑡)cos(𝜆𝑡)] =

𝑥−𝑡

𝑥−𝑦
sin(𝜆𝑡)𝑤 𝑠 +

𝑡−𝑦

𝑥−𝑦
sin(𝜆𝑡)𝑧 𝑠

+
𝑥−𝑡

𝑥−𝑦
cos(𝜆𝑡)𝑤 𝑐 +

𝑡−𝑦

𝑥−𝑦
cos(𝜆𝑡)𝑧 𝑠 ,

 (4) 

 with bijective transformation (𝑤𝑠 , 𝑤𝑐 , 𝑧𝑠 , 𝑧𝑐) → (𝑤 𝑠 , 𝑤 𝑐 , 𝑧 𝑠 , 𝑧 𝑐), under constant 

𝜆, 𝜓1, 𝜓2 , … , 𝜓𝑝 . Based on (4) we can approximate the model (2) as  

 𝑌𝑡 =  ‍𝑝
𝑘=1 𝜓𝑘𝑌𝑡−𝑘 + 𝑔 (𝜆, 𝑡) + 𝜇 + 𝜀𝑡 , 

where 𝑔 (𝜆, 𝑡) is of the general form (1). We called the above model approximation since (4) 

holds on integer line, while we consider in the model a linear spline. The above model can be 

generalized in natural way to multi-frequency case  

 𝑌𝑡 =  ‍𝑝
𝑘=1 𝜓𝑘𝑌𝑡−𝑘 +  ‍𝑚

𝑘=1 𝑔 𝑘(𝜆𝑘 , 𝑡) + 𝜇 + 𝜀𝑡 ,    (5) 

where 𝑔 𝑘(𝜆𝑘 , 𝑡), for 𝑘 = 1,2, … , 𝑚 are of the general form (1). In such a case we use notation 

{(𝑡𝑖,𝑘 , 𝑎𝑖,𝑘), 𝑖 = 0,1, … , 𝑟𝑘} for 𝑎𝑘(𝑡) and {(𝑡𝑖,𝑘 , 𝑏𝑖,𝑘), 𝑖 = 0,1,2, … , 𝑟𝑘} for 𝑏𝑘(𝑡), where 𝑘 

corresponds to frequency 𝜆𝑘 , 𝑘 = 1,2, … , 𝑚. To claryfy the model with time-varying 

amplitude we consider the following ilustrative example, where the dynamics of 𝑔 𝜆, 𝑡  are 

ilustrated. 

 

Example 1. We consider 𝑛 = 156, 𝑝 = 0, one frequency 𝜆 = 0.15, 𝑟 ∈ {2,3,4,6} and with 

equally spaced 𝑡0 = 1, 𝑡1, 𝑡2 , … , 𝑡𝑟 = 𝑛. For fixed 𝑟 we draw each 𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑟  from 

uniform distribution on the interval [2,15] and 𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑟  from uniform distribution on 

the interval [−5,0].  

 

Table 1. Parameters used in example. 

𝒓   {𝒂𝟎, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒓}   {𝒃𝟎, 𝒃𝟏, 𝒃𝟐, … , 𝒃𝒓}  

𝑟 = 2   {8.9,2.2,5.8}   {−0.4, −2. , −4.5}  

𝑟 = 3   {14.7,8.3,3.2,14. }   {−0.8, −3.9, −2.4, −0.7} 

𝑟 = 4   {4.7,10. ,8.9,2.6,2.9}   {−4.5,0. , −1.4, −2.2, −4.1} 

𝑟 = 6   {10.2,8.8,8. ,4.7,3.4,8.5,6.8}   {−1. , −1.4, −3.4, −2.3, −2.1, −3.6, −4.2}  

 

The main finding from presented example (see Fig. 1) is that the cycle based on (1) with 

time-varying amplitude and with one frequency is much more flexible than deterministic 

cycle with one frequency and constant amplitude. Hence, the proposed deterministic cycle 

model with time-varying amplitude may be useful from practical point of view in statistical 

inference concerning amplitude and length of the cycle. 
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r=2 

 

r=3 

 

r=4 

 

r=6 

Fig. 1. Paths for 𝑔 𝜆, 𝑡  for different 𝑟 and {𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑟}, {𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑟}. 

 

3 Bayesian inference for frequency 

In this section we obtain closed form of marginal posterior distribution for vector of 

frequency Λ = (𝜆1, 𝜆2, … , 𝜆𝑚). Note that model (5) can be equivalently written as:  

 𝐲 = 𝐗𝛽 + 𝜀,          (6) 

where 𝐲 = [𝑦1  𝑦2   …  𝑦𝑛 ]T , the matrix 𝐗 depends on Λ = (𝜆1, 𝜆2, … , 𝜆𝑚 ) and the first 

coordinates of knots, 𝛽 is a  1 + 𝑝 + 2 𝑟1 + 𝑟2 + ⋯ + 𝑟m + 𝑚   x 1 vector of parameters: 

 
𝛽 = [𝜇  𝜓1   𝜓2   …  𝜓𝑝   𝑎0,1  𝑎1,1   …  𝑎𝑟1 ,1  𝑏0,1  𝑏1,1   …  𝑏𝑟1 ,1   …  

𝑎0,𝑚   𝑎1,𝑚   …  𝑎𝑟𝑚 ,𝑚   𝑏0,𝑚   𝑎1,𝑚   …  𝑏𝑟𝑚 ,𝑚 ]T .
 

Moreover we assume that 𝜀𝑡~𝑁 0, 𝜏−1 , for 𝑡 = 1,2, … , 𝑛, where 𝜀 = [𝜀1  𝜀2   …  𝜀𝑛]T . Let us 

denote 𝜃 = (𝛽, 𝜏, 𝜆1, 𝜆2, … , 𝜆𝑚 ). The likelihood function is of the form:  

𝑝 𝐲 𝜃 =
1

 (2𝜋)𝑛
𝜏
𝑛
2 exp  −

𝜏

2
 𝐲 − 𝐗𝛽 ′ 𝐲 − 𝐗𝛽  . 

We assume the standard conjugate family of distributions: 

𝑝 𝜃 = 𝑝 𝛽, 𝜏 𝑝 𝜑 = 𝑝 𝛽 𝜏 𝑝 𝜏 𝑝 𝜑 , 

where 𝛽| 𝜏~𝑁 𝐛,  𝜏𝐁 −1  and 𝜏~𝐺  
𝑛0

2
,
𝑠0

2
 ,  with prior hyperparameters 𝐛, 𝐁, 𝑛0, 𝑠0. Under 

such notation: 

𝑝(𝛽|𝜏) = (2𝜋)−𝑘/2(det(𝐁))1/2𝜏𝑘/2exp  −
𝜏

2
(𝛽 − 𝐛)′𝐁(𝛽 − 𝐛) , 

𝑝 𝜏 =
(𝑠0/2)

𝑛0
2

Γ  
𝑛0

2  
𝜏
𝑛0
2

−1exp  −
𝑠0𝜏

2
 . 
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For the frequency vector (𝜆1, 𝜆2, … , 𝜆𝑚) we assume uniform distribution on  𝜆𝐿 , 𝜆𝑈 
𝑚 . Using 

now the same arguments as in in Lenart and Mazur (2016) we get the marginal posterior 

distribution for Λ of the form  

𝑝(Λ|𝐲) ∝ (det(𝐗′𝐗 + 𝐁))−1/2 𝐲′ 𝐈 − 𝐗(𝐗′𝐗 + 𝐁)−1𝐗′ 𝐲 + 𝑠0 
−

𝑛+𝑛0
2 .) (7) 

 

4 Real data example 

We consider production in industry in Poland
2
 (mining and quarrying; manufacturing; 

electricity, gas, steam and air conditioning supply – percentage change compared to same 

period in previous year, calendar adjusted data, not seasonally adjusted data) from Jan. 2001 

to Oct. 2017. We restrict attention to the set of frequencies [
𝜋

120
,
𝜋

9
]. It means that we consider 

only the cycles which are not shorter than one and a half year and longer than 20 years. We 

fix 𝑛 = 180 and we consider last 15 years for the data set in our empirical analysis. Fig. 2 

presents the marginal posterior distributions (7) for bivariate case (Λ = (𝜆1, 𝜆2)) for constant 

amplitude, 𝑟 = 1, 𝑟 = 2, 𝑟 = 3 and equally spaced knots. Only the case 𝑝 = 10 and 𝑚 = 2 is 

presented. 

 

 

(a) Constant amplitude 

 

(b) r=1 

                                                           
2
Source: Eurostat. 
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(c) r=2 

 

(d) r=3 

Fig. 2. Marginal posterior distribution (kernel) for Λ = (𝜆1, 𝜆2). Horizontal and vertical axis - 

length of the cycle in years, 𝑝 = 10. Shades of grey corresponds to kernel value. 

 

 

 

(a) Constant amplitude 

 

(b) r=1 

 

(c) r=2 

 

(d) r=3 

Fig. 3. Marginal posterior distribution (kernel) for one frequency 𝜆1 in bivariate case Λ =

(𝜆1, 𝜆2). Horizontal axis - length of the cycle in years, 𝑝 = 10. 

 

Marginal distribution (kernel) under constant amplitude (see Fig. 2 (a)) show two 

predominant length of the deterministic cycle. Cycle with length approx. 3.5 year and 2 years 

(see also Fig. 3). The mass is concentrated relativly close these two frequencies compared to 

time-varying amplitude (see Fig. 2 (b)-(d)). In the case of time-varying amplitude the mass is 

still concentrated near these frequencies, but with greater dispersion, especially for 𝑟 = 3. 

Hence, the bigger 𝑟 the weaker multimodality of posterior distribution. The main findings is 

that for each considered 𝑟 the results clearly support the length of the business cycle approx. 

3.5 years (see Fig. 3). The similar conclusions can be found in Lenart et al. (2016), where the 

same length of the cycle was detected using industrial production in Poland to Dec. 2014. 
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Conclusions 

The closed form of marginal posterior distribution for frequencies in case of time-varying 

amplitude was shown. This gives the opportunity to expand the statistical inference proposed 

in Lenart and Mazur (2016). The real data example shows that in the case of last 15 years of 

industrial production in Poland (covering the period 2002-2017) the predominant length of the 

cycle is approx. 3.5 year. This conclusion is supported by both constant amplitude case and 

time-varying case. An open problem is the construction of the forecast assuming a time-

varying amplitude of the deterministic cycle. 
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