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Abstract 

We develop a class of parametric bivariate distributions that are capable of accounting for non-standard 

empirical properties that are evident in some financial time series. We aim at creating a parametric framework 

that allows for serious divergences from the multivariate Gaussian case both in terms of properties of marginal 

distributions and in terms of the dependence pattern. We are particularly interested in obtaining a multivariate 

construct that allows for considerable degree of heterogeneity in marginal properties of its components (like tail 

thickness and asymmetry). Moreover, we consider non-standard dependence patterns that go beyond a linear 

correlation-type relationship while maintaining simplicity, obtained by introducing rotations. We make use of 

marginal distributions that belong to generalized asymmetric t class analysed by Harvey and Lange (2017), 

allowing not only for skewness but also for asymmetric tail thickness. We illustrate flexibility of the resulting 

bivariate distribution and investigate its empirical performance examining unconditional properties of bivariate 

daily financial series representing dynamics of stock price indices and the related FUTURES contracts. 
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1 Introduction 

The empirical distributions of economic variables might display serious divergences from the 

multivariate normal case; see Genton (2004). For example pervasive heavy tails and volatility 

amplify studies that aim at searching for an appropriate families of multivariate probability 

distributions that would lead to successful modelling of empirical features in case of related 

financial returns. In particular since 2000’s many authors tried to go beyond conditional 

normality assumed commonly in case of Multivariate GARCH (M-GARCH) models. For 

example conditionally elliptical distribution in DCC model was presented by Pelagatti and 

Rondena (2004). Some other non-Gaussian conditional distributions we analysed by Bauwens 

and Laurent (2005), Sahu et al. (2001), Pipień (2012) and others. However, commonly 

applied econometric strategy using the Maximum Likelihood estimation procedure might 
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result with a considerable small-sample bias; see Iglesias and Phillips (2006).There is no 

doubt that proper modelling of empirical features observed for the case of related financial 

time series require construction of a flexible class of distributions; moreover, the development 

of alternative methods of statistical inference is necessary. In this paper we address these two 

issues. We propose a novel class of parametric bivariate distributions to model empirical 

properties that are evident in some financial time series. We depart from the multivariate 

Gaussian case both in terms of properties of the marginal distributions and in terms of the co-

dependence pattern. In order to achieve flexibility we make use of marginal distributions that 

belong to generalized asymmetric Student-t class analysed by Harvey and Lange (2017), 

allowing not only for skewness but also for asymmetric tail thickness. We also develop 

methods of formal Bayesian inference and present posterior analysis within constructed class 

of sampling models. We also consider the issue of Bayesian (density) prediction.In the paper 

we illustrate flexibility of the resulting bivariate distribution and investigate its empirical 

performance examining unconditional properties of bivariate daily financial series 

representing dynamics of stock price indices and the related FUTURES contracts. 

 

2 A family of non-standard bivariate distributions 

For m-variate random variable 𝐳 = (𝑧1,… , 𝑧𝑚 ) with independent coordinates, i.e. with 

𝑝 𝐳 =  𝑝𝑖(𝑧𝑖)
𝑚
𝑖=1 , one may consider a distribution resulting from a linear transformation: 

𝛆 = 𝐴 ∙ 𝐳 + 𝐛. 

For a nonsingulartransformation matrix 𝐴[𝑚𝑥𝑚 ]the distribution of 𝛆 is described by a well-

defined density of the following form: 

𝑝 𝛆 =
1

|det (𝐴)|
 𝑝𝑖(𝐴

−1 (𝑖)
(𝛆 − 𝐛))𝑚

𝑖=1 , 

where 𝐴
−1 (𝑖)

 denotes i-th row of matrix 𝐴−1.In what followswe make use of this result in 

a bivariate setting, going far beyond the standard scheme where A is defined as a root of 

symmetric and positive definite matrix generating the covariance structure. 

To define the univariate distributions 𝑝𝑖we apply the generalised Student t-distribution 

proposed recently by Harvey and Lange (2017). It generalizes previous results by Zhu and 

Zinde-Walsh (2009), Zhu and Galbraith (2010)as well asFernández and Steel(1998) and 

Theodossiou (1998) among others, see the references and discussion by Harvey and Lange 

(2017). 

However, the form used here is re-scaled to ensure unit variance. The resulting probability 

density function (with mode at 0 and nonzero mean in general) is: 
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where GAST stands for ‘generalized asymmetric skew t’ and h denotes variance. The 

distribution is a two-piece version of a generalized t distribution; parameter 0 <𝛼 < 1 

introduces skewness, with 𝛼 = 0.5 denoting the absence of skewing (symmetry requires 

also𝜂𝐿 = 𝜂𝑅  and𝜐𝐿 =𝜂𝑅);𝜐’s control shape around the mode (being more flat or spiked, in 

a GED-like manner, with 𝜐 = 2 leading to t-type shape), while 𝜂’s affect tail thickness (we 

require that 𝜂𝐿, 𝜂𝑅> 2 to ensure that variance is finite). However, the influence of 𝜂’s and 𝜐’s 

on tail behaviour is not separated clearly. Setting 𝜐𝐿 = 𝜐𝑅 = 2 and 𝜂𝐿 = 𝜂𝑅  leads to skew-t 

case, with skew-normal and normal distributions being the limiting ones with 𝜂𝐿 and𝜂𝑅. 

Hence, the asymmetric and flexible distribution encompasses a number of well-known 

distributions, including the GED (𝜂𝐿 and 𝜂𝑅). We assume 𝜂𝐿, 𝜂𝑅> 2 and 𝜐𝐿, 𝜐𝑅> 1.𝐾𝐿𝑅 

and 𝑓 denote rather complicated functions of shape parameters: 𝐾𝐿𝑅 and 𝛼∗is given by Harvey 

and Lange (2017), note that P{Z < 0} = 𝛼∗,and𝑓 = 𝑑 − 𝑐2 with: 

𝑐 = −𝛼∗2𝛼
𝜂𝐿

1
𝜐𝐿Γ 
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. 

Consider a product measure-typebivariate generalised Student t distribution of the form: 

𝑝 𝐳 = 𝑝 𝑧1, 𝑧2 = 𝑝𝑍1
 𝑧1 𝑝𝑍2

 𝑧2 , 

where𝑝𝑍𝑖
 𝑧𝑖  is the generalised Student t distribution of Harvey and Lange (2017) with 

individual shape parameters, transformed into the above GAST form (parametrized in terms 

of variance).The only restriction is that each coordinate in 𝒛 has the same variance ℎ1, i.e. 

𝑉 𝐳 = ℎ1𝐈. The existence of variance could in principle be relaxed (in a scale-driven model) 

in order to allow for e.g. Cauchy-type tails. Now assume that the variable zis subject toa linear 

transformation, but the transformationmatrix is orthogonal; i.e.: 𝐯 = 𝐑 𝜑 𝐳, where: 

𝐑 𝜑 =  
cos 𝜑 sin 𝜑 

−sin 𝜑 cos 𝜑 
 . 

The matrix 𝐑 𝜑 imposes clockwise rotationby angle 𝜑;𝐑 𝜑 
−1 = 𝐑 𝜑 

′  withdet 𝐑 𝜑  = 1; 

the transformation might affect the density type but leaves the covariance structure 
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intact.Thus vi’s are uncorrelated with the same variances, but their marginal distribution might 

change (relative to those of zi’s). The density of the distribution of v is given by the formula: 

𝑝 𝐯 = det 𝐑 𝜑  𝑝𝑍1
 𝐑 𝜑 

(1)′
𝐯 𝑝𝑍2

 𝐑 𝜑 
(2)′

𝐯 = 𝑝𝑍1
 𝐑 𝜑 

(1)′
𝐯 𝑝𝑍2

 𝐑 𝜑 
(2)′

𝐯 . 

 

Isodensities 
Change of canonical 

basis 

Distribution of 

vertical margin 

Distribution of 

horizontal margin 

 

invariance for any 

orthogonal 

transformation 

  

    

    

    

Fig.1. Plots of isodensities, transformation of the canonical basis and marginal 

distributions of coordinates in Gaussian case (first row) as well as in case of 𝐯 = 𝐑 φ 𝐳, for 

φ = 0 (second row), φ =
𝜋

4
 (third row), φ = −

𝜋

6
 (fourth row). 

 

Fig. 1 shows how the shape of the isodensities of 𝐯 varies with respect to different values 

of the shape and the asymmetry parameters. In each case we analyse distributions with 

variances for margins equal to 4. In the first row we plotted the reference case as the bivariate 
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Gaussian distribution, being a limiting case here. Possible directional asymmetry and different 

tail behaviour is presented by the isodensities in the second row. The effect of rotation by 

a different angle is shown in the third and fourth row. The most interesting property of the 

analysed distributions is that the dependence pattern assumes zero correlations. 

 

Isodensities 
Change of canonical 

basis 

Distribution of 

vertical margin 

Distribution of 

horizontal margin 

    

    

    

    

Fig.2. Plots of isodensities, transformation of the canonical basis and marginal 

distributions of coordinates in Gaussian case (first row) as well as in case of 𝐲 = 𝐂𝐯for φ = 0 

(second row), φ =
𝜋

4
 (third row), φ = −

𝜋

6
 (fourth row). In each case we keep the same 

variances for margins equal to 4 and correlation ρ = 0.5. 
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The (rotated) vector v is subject to a further linear transformation that imposes location 

(mode)𝐦and covariance structure (i.e. correlation and differences in variances) upon 𝐯: 

𝐲 = 𝐂𝐯 + 𝐦. 

The matrix C can be parametrized using different concepts of matrix roots, though here we 

assume that it has the following form: 

𝐂 =  
 1 − ρ2 ρ

0
 ℎ2

 ℎ1

 . 

Then hi are variances of coordinates and ρ ∈ (−1,1) represents the correlation coefficient 

between y1 and y2. The density of the distribution of y is given by the following formula: 

𝑝 𝐲 = det 𝐂−1 𝑝𝑍1
 𝐑 𝜑 

(1)′
𝐂−1 𝐲 − 𝐦  𝑝𝑍2

 𝐑 𝜑 
(2)′

𝐂−1 𝐲 − 𝐦  . 

Fig. 2 depicts isodensities of some exemplary cases of distribution of 𝐲 = 𝐂𝐯. We analyse 

correlated versions of distributions presented on Fig. 1. In each case we assumed correlation 

coefficient ρ = 0.5. Bivariate distributions presented on Fig. 2 show remarkable degree of 

flexibility in modelling structure of observables, though it does not exceed the case of a linear 

transformation of the product measure initially defined for a vector 𝑝 𝐳 . Its flexibility results 

from the fact that all the shape parameters could be made dimension-specific (in the space of 

z’s). Crucially, the original formulation of Harvey and Lange allows for a complicated 

asymmetry pattern which is here generalized to a higher dimension. The distribution is 

unimodal by construction (which is not necessarily true about some other flexible constructs 

like mixtures), however its mean is a complicated function of all the model parameters. The 

rotation angle φis identified if 𝑝 𝐳  defines a distribution class that is not closed under 

rotations, which holds almost everywhere in the parameter space considered here. However, 

e.g. for a (limiting) special case of bivariate Gaussian distribution, φ would be locally 

unidentified. 

 

3 Empirical illustration 

We analysed daily logarithmic returns of the S&P500 SPOT and FUTURES together with 

volumes traded, covering the period from 28.08.2001 till 12.12.2017; 4099 observations. We 

considered four bivariate datasets, namely the daily returns of the SPOT index with daily 

returns of the FUTURES volume traded (dataset A), the daily returns of the SPOT index with 

daily returns of the SPOT volume traded (dataset B), the daily returns of the SPOT index with 

daily returns of the FUTURES index (dataset C) and the daily returns of the SPOT volume 
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traded with the daily returns of the FUTURES volume traded (dataset D). The empirical; 

distribution of analysed bivariate series are presented on Fig. 3. 

We applied the class of bivariate distributions, presented in the previous part to model the 

unconditional distribution of analysed series. In order to perform this task we constructed 

Bayesian models for each analysed series.The estimation was carried over using the 

Metropolis-Hastings Random Walk sampler; we assume prior independence across all the 

model parameters. The priors are informative though tailored to convey relatively weak 

information, for example for φ,ρ and 𝛼 we assume uniform priors. A posteriori we find 

limited skewness (with 𝛼 = 0.5 being rather likely) but strong shape asymmetry (e.g. clear 

evidence against 𝜐𝐿 = 𝜐𝑅 or 𝜂𝐿 = 𝜂𝑅  in some cases) which justifies the empirical relevance of 

shape-asymmetric distributions of Zhu and Zinde-Walsh (2009), Zhu and Galbraith (2010)as 

well as Harvey and Lange (2017). We find support for 𝜐𝐿 < 1.5 (e.g. using SPOT index 

returns), 2 <𝜂𝐿< 3 e.g. using volume growth rates of FUTURES; full estimation results are 

available from the authors upon request. 

 

    

Dataset A Dataset B Dataset C Dataset D 

Fig.3.Analysed bivariate time series (the axes are adjusted to match Fig. 4). 

 

The estimated unconditional distributions are presented on Fig. 4. For each dataset we 

plotted isodensities of the distribution corresponding to𝑝 𝐲 with posterior means of 

parameters used as plug-in estimates. We report the empirical importance of the rotation 

effect (relying on the posterior mean of parameter φ). The shapes of resulting marginal 

univariate distributions are also presented.In case of datasets A and B we see a little data 

support in favour of dependence. Also the rotation effect seems negligible. The posterior 

mean of parameter φ is equal to 0.068 in case of dataset A and to 0.050 in case of dataset B. 

Also both datasets support small negative correlation, indicating no substantial linear 

dependence between the variables. The posterior mean of the correlation ρ= - 0.089 in case of 

dataset A and ρ= – 0.057 for dataset B. 
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Fig. 4. Estimation results: plots of isodensities and margins for the parameter values 

corresponding to posterior means. 

 

The strong linear dependence as well as empirical importance of the rotation effect was 

obtained for the case of dataset C. Estimated posterior mean of parameter φ = -1.345 indicates 

strong counter clockwise rotation of coordinates, by more than 75 degrees. The posterior 

mean of correlation parameter ρ = 0.969 is rather high in this case. A moderate effect of 

dependence was obtained in case of dataset D. We report some evidence in favour of the 

rotation effect, as the posterior mean of φ = -0.185. It results with counter clockwise rotation 

of coordinates by about 10 degrees. The dataset D can be also described by small positive 
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correlation, since the posterior mean of ρ=0.236. The posterior-predictive distribution (that 

takes into account the estimation uncertainty) is depicted in Fig. 5 (for the dataset B). 

 

  

observations posterior-predictive distribution 

Fig. 5. Dataset B: the data versus the posterior-predictive density. 

 

Conclusions 

We develop a class of flexible multivariate distributions that differs from the usual ones in 

two particular aspects. Firstly, we allow for high degree of stochastic heterogeneity across 

variables (addressing asymmetry and tail thickness issues), allowing for 5 shape parameters 

per dimension. Secondly, we introduce the dependence not only via covariances but also via 

rotations (which is possible due to generality of the distribution). This approach differs from 

the alternative ones e.g. using the copula functions: here the form of marginal distribution is 

not directly controlled. However, the dependence structure is imposed by a well-defined 

transformation that goes beyond considering covariances only while it remains tractable also 

in higher dimensions. Hence we provide a practical generalization of a product measure 

which allows for high degree of heterogeneity, more complicated dependence while avoiding 

potential problems that arise within high-dimensional modelling using copula functions. The 

number of shape parameters increases linearly with dimension, but one could of course 

consider less-heavily parametrized special cases obtained by linear constraints. Therefore the 

model provides ageneral framework allowing for the search for empirically relevant 

(restricted) special cases. Importantly, the construct considered here could be used to define 

conditional distribution in a dynamic model, which will be subject to further research. 
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