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Daniel Kosiorowski1, Przemysław Jaśko2, Ewa Szlachtowska

Abstract
This paper critically discusses three robust model based clustering techniques in a context of their applicative 
usefulness in a process of specifying a two dimensional model generating spatio-temporal data related to a digital 
economy. We among others study TCLUST, OTRIMLE algorithms and certain algorithms, which are available in 
the mclust R package. Theoretical considerations are illustrated by means of empirical issues related to a prelimi-
nary analysis of spatial phenomena of a digital economy. Additionally, we present results of simulation studies 
involving spatial processes departing from regularity.
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1.	 Introduction and problem formulation
Sustainable socio-economic development of modern societies belongs to hot topics in a cur-
rent public and scientific debate. A motivation of this paper relates to a problem of specifying 
a spatial model describing “digital development” in a certain region of space, for example in 
a geographic or administrative region of a country. The paper concentrates on a choice of an 
appropriate robust model-based clustering technique, which shall provide functions, which are 
further used in an estimation of a functional regression model describing a digital development 
of the region. It should be pointed out that in robust modelling we concentrate on an influential 
majority of cases, having more or less formalised idea in mind, which does and which does not 
belong to a data generating mechanism  (Kosiorowski and Zawadzki 2019). Despite of the fact 
that one can find several promising clustering procedures in the literature, which are described 
by authors as robust, an issue of robustness of a clustering procedure is still an open problem 
(Hennig, 2004). One cannot find a comprehensive study which compares these procedures in 
a context of modelling of economic spatial-temporal phenomena. In order to fill that gap we 
among others conducted a simulation research, in which clusters were generated by a mixture 
of skewed Student T distributions, a noise has “irregular” spiral shape support and additionally 
samples contained outliers. We aimed at modelling a situation of an existence of “asymmetric 
centres of gravity”, e.g., cities, a net of roads and an object playing a role of a capital. 

A sequence of mappings E = {En}n∈ℕ is called a general clustering method, if En maps 
a collection of entities Xn = {x1, ..., xn} to a collection of subsets {C1, ..., CG} of Xn. It is as-
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sumed that entities with different indexes can be distinguished. For a disjoint clustering method 
(DCM) Ci ∩ Cj = Ø for i ≠ j ⩽ G. Most popular DCM yield partitions 

⋃G
j=1 Cj = Xn . 

We consider a following general spatio-temporal model of a digital development

	 m : Rd × T � (z, t)→
m

P(z, t) ∈ F 	 (1)

where z ∈ ℝd denotes spatial coordinates, T = [0, t*) denotes time, F  denotes a certain family 
of probability density functions defined on ℝd and P(z, t) denotes an element of the family in-
dexed by a space point  and time point t (for a detailed presentation of general issues related to 
a specification of (1) see chapter nine of Kokoszka and Reimherr, 2017). 

Assume, we have a collection of samples from the above model Xn
z1,t1, X

n
z2,t2, . . . , X

n
zG,tG,   

indexed by points in the space and time. For each sample we perform robust model based clus-
tering, Em

z1,t1, E
m
z2,t2, . . . , E

m
zG,tG . Taking into account, that we consider model based clusterings, 

the sequence of clusterings denotes a sample of estimates of mixture densities (well-defined 
functions) indexed by the spatial-temporal parameters. The sequence enables us for an estima-
tion of a specific form of the model (1) using known methods of estimation (e.g. using func-
tional principal component method of estimation of a linear model of a type “vector-function” 
or functional kernel regression, see Ramsay and Silveman, 2005).

2.	 A comparison of robust model based clustering methods
The term “model-based cluster analysis” was coined by Banfield and Raftery (1993) for cluster-
ing based on finite mixtures of Gaussian distributions and related methods. In multidimensional 
case the standard Gaussian mixture model is to assume that data Xn = {x1, ..., xn} are modelled 
as drawn i. i. d. from a distribution with density

	 f (x; θ) =
G∑

j=1

π jφ(x; µ j ,Σ j)	 (2)

where ϕ(∙, μj, Σj) is the density of a Gaussian distribution with mean vector μj and covariance 
matrix Σj, πj is the proportion of the j-th mixture component, ∑G

j=1 π j = 1 . The parameter vector 
θ contains all proportions, means and covariances.

The most popular estimator of θ is the maximum likelihood estimator (ML). It leads to 
a natural clustering rule: classify an observation to the mixture component maximizing its pos-
terior probability for a class membership.

3.	 Selected robust model based clustering methods
MCLUST. The MCLUST (Scrucca et al. 2016), uses a Gaussian mixture model which has 
a single term representing a noise, and is given by

	
n∏

i=1

π0
I{xi ∈ S}

V
+

G∑

j=1

π jφ(xi; µ j ,Σ j)

 ,	 (3)
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where V is a volume of a convex hull S of the sample Xn and I{∙} denotes an indicator function, 
xi represents an observation, G denotes number of components, πj is the probability that an ob-
servation belongs to the j-th component (π j � 0 , 

∑G
j=1 π j = 1), φ(·; µ j ,Σ j) denotes density of the 

p-dimensional normal distribution with parameters (μj, Σj). 
Model selection is obtained via maximization of Bayesian Information Criterion (BIC)

	 BIC ≡ �M(Xn, θ∗)pM log(n), 	 (4)

where �M(Xn, θ∗) is the maximized loglikelihood for the model and the data Xn, pM  is the num-
ber of parameters to be estimated in the model M , and n is number of observations.

TCLUST. The second algorithm we consider is the TCLUST (Fritz et al. 2012). Various 
aspects of its empirical usefulness were studied in Szlachtowska et al. (2016).

OTRIMLE. The third algorithm we consider is the RIMLE (Coretto, Hennig 2013), which 
maximizes a pseudo-likelihood, based on the improper pseudo-density of the form

	 ψδ(x; θ) = π0δ +

G∑

j=1

π jφ(x; µ j ,Σ j),	 (5)

where ϕ(∙; μj, Σj) is the p-dimensional Gaussian density with mean μj ϵ ℝρ and covariance ma-
trix Σj, π0, πj ∈ [0,1] for j = 1, 2, …, G, π0 +

∑G
j=1 π j = 1, and δ > 0 is the improper uniform 

density representing outliers.
This improper uniform density, which is not spanned on the predefined support set (unlike 

in the MCLUST, where support set S is selected to cover the data sample Xn, is not aimed to 
model the noise component, but it’s rather treated as a technical tool to account for the points, 
which are in low density areas for Gaussian components. In contrast to the MCLUST model, 
extreme points in the data sample, won’t have impact on the uniform density, which in the 
RIMLE model takes the improper form.

The parameter vector θ contains all Gaussian components parameters and each of the pro-
portion parameters, including π0. In the RIMLE model the δ and the number of Gaussian com-
ponents G are treated as fixed.

Given the sample Xn the improper pseudo-log-likelihood function takes the form 

	 �n(θ) =
1
n

n∑

i=1

logψδ(xi; θ), 	 (6)

and for prespecified value of δ the RIMLE estimator is defined as

	 θ̂RIMLE
n (δ) = arg maxθ∈Θn �n(θ), 	 (7)

where Θn is a constrained parameter space defined as 

	 Θn =


θ : π j � 0∀ j � 1, π0 +

G∑

j=1

π j = 1;
λmax(Σ θ)
λmin(Σ θ)

� γ;
1
n

n∑

i=1

τ0(xi; θ) � πmax


. 	 (8)
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The parameter space Θn is defined by (Correto and Hennig, 2013) to ensure existence of 
the RIMLE estimator θ̂RIMLE

n (δ) . To obtain boundedness of the pseudo-log-likelihood criterion 
function, along with constraints on the proportion parameters and the eigenratio constraint, ad-
ditional constraint called the “noise proportion” is needed in the RIMLE case.

To establish the eigenratio constraint, we need to introduce some notation. Given λj,k is the 
k-th eigenvalue of the j-th component covariance matrix Σj, we define the set of eigenvalues 
Λ(Σθ) = {λj,k: j = 1,2,…, G; k = 1,2,…, p}, from which we select respectively minimal and maxi-
mal element: λmin(Σθ) = minj,k Λ(Σθ), λmax(Σθ) = maxj,k Λ(Σθ). Eigenratio constraint is aimed at 
preventing from the degeneracy of model “regular” components distributions, in other words, 
from having some components with Gaussian distributions, concentrated in the vector subspace 
of ℝp, resulting in the singular covariance matrix parameters for them, which in turn translates 
into the infinite value of the pseudo-likelihood function.  In the RIMLE case, eigenratio con-
straint alone, cannot preclude forming “regular” components with distributions concentrated 
on single points, and all other points fitted by the improper uniform component. In order to 
mitigate such kind of situations, the “noise proportion” constraint is added to the definition of 
RIMLE parameter space. Considered constraint is defined using pseudo posterior probabilities 
of the noise component for consecutive sample observations.

Under the RIMLE model with parameter θ, noise component pseudo posterior probability 
τ0(xi; θ), conditional on the observation xi ∈ Xn, is given by

	 τ0(xi; θ) =
π0δ

ψδ(xi; θ)
=

π0δ

π0δ +
∑G

j=1 π jφ(xi; µ j ,Σ j)
.	 (9)

Using ergodic arguments, Xn sample mean of the pseudo posterior probabilities 
1
n
∑n

i=1 τ0(xi; θ) , can be treated as an approximation to the expected proportion of noise points, 
under model parameter θ. So, constraint 1

n
∑n

i=1 τ0(xi; θ) � πmax, imposes that expected noise 
proportion should be no higher than πmax ∈ (0,1).

As can be seen the “noise proportion” constraint is sample dependent, which in turn trans-
lates into the dependency of the parameter space Θn on the sample Xn. Pseudo posterior prob-
abilities τj(xi; θ), j = 1,2,…, G for the Gaussian components are defined analogously. The ob-
servation xi is assigned to the cluster whose index corresponds to the highest pseudo posterior 
J(xi;  θ) = arg maxj∈{1,2,…, G}τj(xi; θ). To fix the value of δ for the noise component improper 
uniform density, on which estimator θ̂RIMLE

n (δ)  depends, (Correto, Hennig, 2013) proposed the 
OTRIMLE (Optimally Tuned RIMLE) procedure. Under the OTRIMLE approach, improper 
density level δ is selected according to the formal criterion, which allow to make trade-off be-
tween conformity of components’ empirical distributions with Gaussian distribution and a pro-
portion of outliers. Optimal level for the improper density is given by

	 δn = arg minδ ∈ [0,δmax]D(δ) + βπ0,n,	 (10)
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where δmax > 0 is a prespecified value, and β ⩾ 0 is the penalty parameter for increasing the 
proportion of outliers component, while D(δ) measures departures from Gaussianity of “regular 
component” empirical data clusters, resulting under the model improper constant density level 
of δ. With the observation assignment rule for J the RIMLE estimator θ̂RIMLE

n (δ) , value of the 
D(δ) is based on the Kolmogorov distances between the components’ empirical distributions of 
square Mahalanobis distances and the chi-square distribution with  degrees of freedom, which 
is expected for them under Gaussianity of components. Under the OTRIMLE procedure, to find 
the optimal value of δn, the RIMLE estimator θ̂RIMLE

n (δ)  value is computed over the candidate 
set, within certain “golden section search algorithm”. To compute values of the RIMLE estima-
tors the ECM-algorithm (Expectation Conditional Maximization algorithm) is used, for which 
pseudocode is presented in (Correto and Hennig, 2013). This kind of algorithm imposes fulfill-
ment of the RIMLE parameter space constraints in each of its iteration.

4.	 A comparison of computational algorithms for considered robust estimators

Table 1. A summary comparison of the clustering algorithms

Aspect \ Algorithm MCLUST TCLUST OTRIMLE
An approach to take 
noise into account  

Uniform distribution 
with a predefined 
support dependent 
on a convex hull of 
a sample Xn.

A noise is jointly 
modelled with  
outliers.

Using an improper 
uniform distribution.

Conditions for the 
identification of the 
estimator

Different kinds of 
parametrisations for 
cluster dispersion 
matrices (imposing 
constraints of cluster 
distributions).

Conditions on ratios 
of cluster dispersion 
matrices eigenvalues.

Conditions on ratios 
of cluster dispersion 
matrices eigenvalues, 
and on proportion of 
noise.

Consistency of the 
estimator

By default ML esti-
mator enhanced with 
BIC is used.

By default ML estima-
tor based on the MCD 
is used.

Affine equivariance 
of the estimator

Maximised objective 
function is affine equi-
variant, but initializa-
tion steps are not.

Depending on the 
predefined constraints 
on scatter matrices.

Not, for the basic 
form of the estimator. 
Yes, for the modified 
RIMLE.

Algorithm for finding 
an optimal value of the 
objective function

Expectation-Maximi-
zation (EM)

Classification EM Expectation-Condi-
tional Maximization 
(ECM)
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Aspect \ Algorithm MCLUST TCLUST OTRIMLE
Breakdown point Problems with 

outliers at extreme 
positions.

Depends on a con-
figuration of data in 
a sample.

Depends on a con-
figuration of data in 
a sample.

Implementation in R mclust tclust otrimle

OTRIMLE criterion for the δ constant, allows for a trade-off between a departure of compo-
nents of empirical distributions from normality and proportion of outliers in a sample. Thanks 
to it, OTRIMLE is less prone to existence of the extreme points in the sample data than the 
MCLUST, where support for the noise component uniform density is a set including all the 
sample points (most often convex hull or hyperrectangle).

Simulation studies. In order to investigate small and moderate sample properties of the 
algorithms in a context of exploring spatial phenomena of digital economy we conducted ex-
tensive simulation studies. We among others generated samples from 2D mixtures of three 
component skewed Student T distributions “noised” by distribution with two-spiral support. 
The samples consisted of 3330 points, from which 3000 were “clean” points, 300 noise points 
and 30 outlying observations.

Fig. 1. Results of clustering using MCLUST Fig. 2. Results of clustering using TCLUST

Fig. 3. Properties of TCLUST clustering for 
dataset with 10% spiral noise

Fig. 4. Properties of TCLUST clustering 
for dataset with 10% spiral noise with 1% 

outliers 

Figure 1 presents results of the clustering using MCLUST for “clean data with noise” (left 
panel) and “noised data with outliers” (right panel). Figures 2–4 present analogous situation 
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for the TCLUST algorithm and figures 5–6 for the OTRIMLE algorithm. The figures may be 
treated as an illustration of a one experiment from a collection of 1000 experiments.

Fig. 5. Results of clustering using OTRIMLE Fig. 6. Results of clustering using OTRIMLE

Empirical example. We used considered algorithms in the image segmentation task for 
the 24-bit RGB digital raster image, with the resolution of 200 × 200 pixels, representing night 
lights satellite image of Poland. We aimed at establishing spatial clusters, with similar level of 
activity, measured by the night light intensity. We assumed that the light intensity correspond 
to a degree of development. To extract data from the image we used R package magick. Data 
were downloaded from the NOAA Database (https://www.ngdc.noaa.gov/eog/download.html). 
Figures 7 and 8 present results of the clustering obtained via MCLUST and TCLUST algo-
rithms correspondingly. For the algorithms we assumed data sample partition into six clusters 
(indicated by the BIC for MCLUST model) and a set of outliers. 

Fig. 7. Night light intensity–results of 
MCLUST 

Fig. 8. Night light intensity–results of 
TCLUST

For both methods results, cluster numbers are sorted according to the decreasing order of its 
mean nightlight brightness. Set grouping outlying observations, associated with the brightest 
pixels is numbered as zero. First we describe results of the MCLUST algorithm. 

https://www.ngdc.noaa.gov/eog/download.html
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Table 2. Pixels (area) partition between clusters by MCLUST and TCLUST

Cluster\ 
Fraction of 

pixels

0 
(black)

1 (red) 2 (green) 3 (blue) 4 (cyan) 5 
(magenta)

6 (yellow)

MCLUST 0.18 13.96 22.46 16.86 9.87 32.76 3.91
TCLUST 0.20 4.13 6.23 10.95 19.03 19.65 39.81

The brightest pixels associated with the main parts of Polish biggest cities (Upper Silesian 
conurbation, Warsaw, Poznan, Cracow, Gdansk) were assigned as outlying observations (these 
pixels are marked by the black colour on the maps). The first cluster is formed by the brightest 
pixels (marked on the map by the red colour) not assigned as outliers, which are concentrated in 
the areas near the Polish biggest cities, especially area between Upper Silesia and Krakow and 
Warsaw suburbs are distinguished. Subsequent three clusters with decreasing mean brightness 
level, are continuously formed by pixels associated with places with increasing distance from the 
main cities (pixels from clusters 2 to 4 are marked on the map respectively by the colours: green 
blue and cyan). Cluster 5 groups pixels representing terrestrial areas, which are least illuminated, 
which are large parts of NE and NW Poland. The sixth cluster, groups pixels representing areas 
on the Baltic Sea, distant from the shores, which are not artificially enlightened. For the TCLUST 
(with assumed fraction of outliers equal 0.2%) clustering results seems to be much better than that 
for the previous method. Most of the clusters include spatially concentrated group of pixels. Pixels 
assigned as outliers (black), form areas which highly resemble administrative territories of the 
biggest Polish cities. First cluster contains pixels (in red) associated with strict metropolitan areas 
of the mentioned cities (the radius for this areas are much smaller than in MCLUST case). The 
cluster 2 contains comparatively to the MCLUST, tiny fraction of pixels (in green) concentrated 
mainly in the area of Upper Silesia and western part of Lesser Poland. Cluster 4 contains pixels 
(cyan) which form fairly vast, continuous areas outside the metropolitan areas of biggest cities. 
Cluster 5 embraces highly scattered pixels (in magenta), mainly in the western part of the country. 
Cluster 6 contains the largest fraction of pixels, representing the least illuminated terrestrial areas 
(north-eastern and eastern part of Poland and north-west) and the full analysed area of the Baltic 
Sea (MCLUST assigned to the sixth cluster only distant parts on the sea). To sum up, in the case of 
the MCLUST and TCLUST respectively, pixels associated with each of the six clusters (0 stands 
for “outlying” pixels group), constitute following fractions of the pixels, representing all of the 
analysed area (which is presented on the map).

Conclusions and further studies
We have critically studied three high quality model based clustering algorithms in the context 
of their applications in modelling of spatial phenomena. We cannot indicate a “total winner”, 
which uniformly maximizes all criteria of evaluation. 



The 13th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena

96

Acknowledgements
DK and PJ thanks for financial support from the Ministry of Science and Higher Educa-
tion within “Regional Initiative of Excellence” Programme for 2019–2022. Project no.: 021/
RID/2018/19. Total financing: 11 897 131,40 PLN.  DK thanks for the support related to CUE 
grant for the research resources preservation 2019.

References
Banfield, J.D. and Raftery, A.E. (1993). Model-based Gaussian and non-Gaussian	clustering. 

Biometrics, 49, 803–821.
Fritz H., García-Escudero L. A., Mayo-Iscar A., (2012), tclust: An R Package for a Trimming 

Approach to Cluster Analysis, Journal of Statistical Software, 47(12), 1–26.
Hennig, C. (2004). Breakdown points for maximum likelihood estimators of location – scale 

mixtures. The Annals of Statistics, 32(4), 1313–1340.
Coretto, P., & Hennig, C. (2013). Finding approximately Gaussian clusters via robust improper 

maximum likelihood. arXiv preprint arXiv:1309.6895.
Hennig, C. (2008). Dissolution point and isolation robustness: robustness criteria for general 

cluster analysis methods. Journal of Multivariate Analysis, 99(6), 1154–1176.
Kokoszka, Reimherr, M. (2017). Introduction to Functional Data Analysis, CRC, London.
Kosiorowski, D., & Zawadzki, Z. (2019). DepthProc An R Package for Robust Exploration of 

Multidimensional Economic Phenomena, Journal of Statistical Software, forthcoming.
Ramsay J., & Silverman, B. (2005). Functional Data Analysis. Springer.
Scrucca, L., Fop, M., Murphy, T.B., & Raftery, A.E. (2016). mclust 5: Clustering, classification 

and density estimation using gaussian finite mixture models. The R journal, 8(1), 289.
Szlachtowska E., Kosiorowski D., Mielczarek D., (2016). Ocena jakości aplikacyjnej odporne-

go algorytmu analizy skupień TCLUST na przykładzie zbioru danych dotyczących jakości 
powietrza w Krakowie, Przegląd Statystyczny, R. 63(1), 67–80.

callto:11%20897%20131,40

