
The 13th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena

160

Bayesian interpretation of quasi-Bayesian inference in a normal 
hierarchical model

Jacek Osiewalski1

Abstract
In modern parametric statistics and its applications latent variables and random effects are widely used, and their 
estimation or prediction is of interest. Under some prior assumptions, Bayes formula can be used to obtain their 
posterior distribution. However, on the sampling-theory grounds, the unknown constants which appear in the prior 
distribution are estimated by means of the data being actually modelled. We call such approaches quasi-Bayesian; 
parametric empirical Bayes is an important example. In this paper we propose theoretical framework that enables 
the Bayesian interpretation of incoherent, quasi-Bayesian inference techniques. Our framework amounts to es-
tablishing a formal Bayesian model that justifies a quasi-Bayesian “posterior” (resulting from some data-based 
“prior”) as a valid posterior distribution. From such Bayesian model, i.e. the joint distribution of observations and 
other quantities, one can deduce the true sampling model, that is the conditional distribution of observations, and 
the true prior (or marginal) distribution of the remaining quantities – latent variables or parameters. Since analyti-
cal derivations are possible in very specific cases, this paper presents only a simple, illustrative example based on 
a normal hierarchical model. It clearly shows that quasi-Bayesian approaches can lead to posterior distributions, 
which formally correspond to sampling models and prior distributions different than the assumed (declared) ones.
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1.	 Introduction
Bayes Theorem, usually used as Bayes formula for density functions of continuous random 
variables, is a central, important tool of Bayesian statistics, but it is not the only characteristic of 
this mode of statistical modelling and inference. There are two defining features of the Bayesian 
approach to statistics. Probabilistic representation of uncertainty about observations (available, 
missing, future), latent variables (or random parameters) and classical parameters (unknown 
constants) is the main feature of Bayesian modelling, and treating all “unknowns” as random 
variables is closely related to the concept of subjective probability. Obeying rules of probability 
calculus is then the main characteristic of Bayesian inference. Obviously, Bayes formula is one 
of these rules (and a very useful one), but following it in isolation from other rules does not 
mean conducting Bayesian inference. 

In modern statistics and its numerous subject areas (like econometrics) latent variables, ran-
dom effects and other unobservable random quantities are frequently used and their estimation 
or prediction is usually of particular interest. Bayes formula can be used to obtain their posterior 
distribution, given appropriate distributional assumptions. Then, the posterior mean can be used 
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as the estimator (or predictor), even within a non-Bayesian approach to statistics. However, the 
posterior distribution (and the posterior mean) of a latent variable depends on unknown con-
stants (parameters) of the assumed class of marginal (or prior) distributions of this variable. The 
purely Bayesian solution amounts to treating all unknowns probabilistically and using probabil-
ity rules on each level of the hierarchical model. On the sampling-theory grounds, however, the 
unknown constants in the prior distribution are estimated on the basis of the data being actually 
modelled. Such approach has been popular since 1970s under the name (parametric) empirical 
Bayes; see Efron and Morris (1972), Morris (1983) and Casella (1985). Empirical Bayes (EB) 
methods can be described as incoherent by an orthodox Bayesian, who by coherency means fol-
lowing basic rules of probability. While such description is formally exact and true, it does not 
provide us with a deeper Bayesian understanding of incoherent inferences that are practically 
useful and frequently adopted in empirical research. 

We propose theoretical framework that enables the purely Bayesian interpretation of inco-
herent, quasi-Bayesian inference techniques such as EB. Our framework amounts to establish-
ing such formal Bayesian model that justifies a quasi-Bayesian “posterior” (resulting from some 
data-based “prior”) as a valid posterior. From this Bayesian model, i.e. the joint distribution of 
observations and other quantities, which justifies the posterior in question, one can deduce (at 
least in principle) the true sampling model, that is the conditional distribution of observations, and 
the true prior (or marginal) distribution of the remaining quantities – latent variables and para
meters. Since analytical derivations are possible only in very specific cases, we present a simple, 
illustrative example in this paper. However, it clearly shows that incoherence of quasi-Bayesian 
approaches can lead to posterior distributions, which formally correspond to sampling models 
and prior distributions different than the assumed (declared) ones. In the next section our general 
framework is presented. Section 3 is devoted to the Bayesian and quasi-Bayesian (EB type) ap-
proaches to dealing with random effects in a normal hierarchical model. Again, our analysis is 
kept as simple as possible in order to enable fully analytical derivations. Section 4 concludes. 

2.	 Bayesian interpretation of “posteriors” resulting from data-based “priors”
By quasi-Bayesian inferences we mean approaches where Bayes formula is used mechanically, 
outside the fully probabilistic Bayesian context that guarantees coherence. Consider the con-
ditional density of observations p(y|ω) = g(y; ω), corresponding to some parametric statistical 
model, and the prior density p(ω) from some parametric family. Then the Bayesian inference 
relies on the posterior density function p(ω|y) ∝ p(y|ω)p(ω) that, again, belongs to some para-
metric family. Assuming that instead of specifying the prior hyper-parameters, one estimates 
them using the actual data  and inserts to the formula for the posterior density. It leads to the 
“posterior” density p*(ω|y) that amounts to using the data-based “prior” p*(ω) = f (ω; y), which 
cannot be the marginal distribution of parameters (and other unknowns, like latent variables). 
Thus, the density p∗(ω|y) ∝ p(y|ω)p∗(ω) ∝ g(y;ω) f (ω; y)  is not the posterior density in the 
original model with initially assumed p(y|ω) and p(ω). However, such p* (ω|y) is a member of 
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the same parametric family as p(ω|y), so it is a well-defined probability density function and it 
can be the true, formal posterior in a completely different Bayesian model. The main question 
we pose here is as follows: what are the true building blocks (sampling model and prior) coher-
ently justifying p*(ω|y) that was initially obtained from a data-based “prior”? It would be useful 
to know hidden assumptions underlying formal Bayesian inference based on p*(ω|y). 

Specifying the marginal distribution of the parameters with the use of the actual data is 
a fundamental form of incoherence, and p*(ω|y) obtained through Bayes formula corresponds 
then to some statistical model and prior assumptions, which have to be discovered. In order to 
obtain p*(ω|y) as the posterior density, we consider the joint distribution of observations and 
parameters that is characterised by the density function:

	 p̃(y, ω) ∝ p(y|ω)p∗(ω) ∝ g(y;ω) f (ω; y),	

which can be decomposed in two ways:

	 p̃(y, ω) = p̃(ω|y)p̃(y) = p̃(y|ω)p̃(ω).	

Note that p̃(ω|y) and p̃(y|ω) are probability density functions if and only if p̃(y) and p̃(ω) 
are densities of σ-finite measures. Then p̃(ω|y) = p∗(ω|y)  by construction, since

	 p̃(ω|y) ∝ p̃(y, ω) ∝ g(y;ω) f (ω; y).	

Also note that the joint density p̃(y, ω)  represents the Bayesian model corresponding to the 
sampling density p̃(y|ω) and the prior density p̃(ω). In this Bayesian model we obtain p*(ω|y) 
as the formal (true) posterior density.

3.	 Quasi-Bayesian and Bayesian analysis of hierarchical models
Now we consider a statistical model with hierarchical structure which can be the starting point 
for explanation and justification of the EB approach. However, in order to use purely analytical 
tools and obtain closed-form solutions, only normal distributions with known variances and 
covariances are examined here. More general priors that correspond to the ones in the basic EB 
literature are left for future research. Hierarchical Bayesian estimation of a more general ran-
dom parameters regression type model is presented in Greene (2008, section 18.8); however, it 
cannot be examined analytically.

The hierarchical structure of a statistical model amounts to assuming the conditional dis-
tribution of observations p(y|θ) = g(y; θ) (y ∈ Y, θ ∈ Θ) where the parameters are in fact latent 
random variables with some distribution dependent on deeper parameters (treated as unknown 
constants on non-Bayesian grounds); its density is denoted as f0(θ; α), α ∈ A ⊆ Rs. Then the 
joint distribution of observations and latent variables (with α fixed) can be written and decom-
posed in the following way:

	 p(y|θ) f0(θ; α) = g(y; θ) f0 (θ; α) = f1(θ|y; α) h(y; α),	
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where h(y; α) and f1(y|θ; α) are the densities of the marginal distribution of observations and the 
conditional distribution of latent variables, respectively. Of course, Bayes formula describes the 
relation between all four density functions:

	 f1(θ|y;α) = g(y; θ) f0(θ;α)/h(y;α) ∝ g(y; θ) f0(θ;α).	

Thus, in order to make inferences on latent variables (given observations) Bayes formula 
is used. However, within non-Bayesian approaches, like EB, no prior distribution is assumed 
for the deeper parameters α, which are estimated using (for example) the maximum likelihood 
principle applied to the density h(y; α), which is considered as a function of α (for any given y). 
Then the estimate of α, e. g., 

	 α̂ = α̂ML = arg max L(α; y) = arg max h(y;α), α ∈ A,	

is inserted into the posterior density of latent variables. So such quasi-Bayesian approach uses 

	 p∗(θ|y) = f1(θ|y, α̂) ∝ p(y|θ) f0(θ; α̂),	

i.e. the “posterior” of θ corresponding to the “prior” with hyper-parameter based on y. This can-
not be a formal Bayesian approach, although Bayes formula has been used at an earlier stage. 
Thus, it is called quasi-Bayesian.

Now let us consider the Bayesian hierarchical model (BHM) 

	 p(y, ω) = p(y, θ, α) = p(y|θ) p(θ|α) p(α),	

where ω = (θ, α), p(α) is the prior density for α ϵ A, and conditional independence: y ⊥ α|θ  
(characteristic for hierarchical models) leads to p(y|ω) = p(y|θ). We use the same notation 
p(y|θ) = g(y; θ) and p(θ|α) = f0(θ; α) as in the quasi-Bayesian case. Basic rules of probability 
calculus lead to the decomposition of our Bayesian model; this decomposition serves making 
inferences on ω = (θ; α):

	 p(y, θ, α) = p(y) p(θ, α|y) = p(y) p(α|y) p(θ|y, α),	

where

	 p(θ|y, α) =
p(y|θ)p(θ|α)

p(y|α)
=

g(y; θ) f0(θ;α)
h(y;α)

= f1(θ|y;α),	

	 p(α|y) =
p(y|α)p(α)

p(y)
=

h(y;α)p(α)
p(y)

, p(y) =
∫

A

p(y|α)p(α) dα.	

Note that Bayes formula has been used twice: for latent variables θ (given parameters α) 
and for parameters α themselves. Again, according to probability rules, the marginal density of 
latent variables is a continuous mixture

	
p(θ|y) =

∫

A

f1(θ|y;α)p(α|y) dα,
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which is the basis of Bayesian inference on θ. Clearly, uncertainty about α is now fully taken 
into account, contrary to the quasi-Bayesian case, where unknown α is simply replaced by its 
point estimate. 

In order to provide a coherent Bayesian interpretation of the quasi-Bayesian “posterior” 
p∗(θ|y) = f1(θ|y, α̂)  in any particular case, we should consider the joint density (Bayesian 
model) p̃(y, θ) that formally leads to p̃(θ|y) = p∗(θ|y) . Then the sampling density p̃(y|θ) and the 
prior density p̃(θ) Bayesianly justify quasi-Bayesian inference based on p*(θ|y). Now we use 
a simple normal hierarchical model as a purely analytical example of our approach. Firstly, we 
present the strict (coherent) Bayesian analysis. Secondly, quasi-Bayesian results are given and 
their Bayesian interpretation is derived. Let θi denote an unobservable characteristic, randomly 
distributed over n observed units (i = 1,…, n). Since θi is specific for the i-th unit, it can be called 
an individual effect. Let xij ~ iiN(θi, c0) (for j = 1,…, m) denote m independent measurements of 
θi, with c0 known. Let em denote the m × 1 vector of ones. Then yi =

1
me′mxi = x̄i. is a sufficient 

statistic (for given θi) and n average measurements grouped in y = (y1 … yn)′ are independent 
and normally distributed given θ = (θ1 … θn)′, i.e. yi|θ ~ iiN(θi, c), where c = c0/m. As it has 
been assumed, the unobserved parameters or individual effects are random (thus they are latent 
variables), independent and normally distributed with the same unknown mean α and the same 
known variance d, i.e. θi ~ iiN(α, d). Thus in this example

	 p(y|θ) = f n
N(y|θ, cIn), f0(θ;α) = f n

N (θ|αen, dIn).	

where f k
N(.|b,C) denotes the density function of the k-variate normal distribution with mean 

vector  and covariance matrix C. 
We can decompose the product p(y|θ) f0(θ; α) into f1(θ|y; α) h(y; α), where

	 h(y;α) =
∫

Rn

p(y|θ) f0(θ;α) dθ = f n
N(y|αen, (c + d)In)	

is the density function of the marginal distribution of the observation vector (given α), and

	 f1(θ|y;α) = f n
N

(
θ

∣∣∣∣∣∣
d−1

c−1 + d−1 αen +
c−1

c−1 + d−1 y,
1

c−1 + d−1 In

)
	

is the posterior density of the vector of random effects (given α), with the mean

	 E(θ|y;α) = w · αen + (1 − w) · y, w =
d−1

c−1 + d−1 =
c

c + d
∈ (0, 1).	

Note that the posterior precision (the inverse of posterior variance) is the sum of the sample 
precision c−1 and the prior precision d −1, and the posterior mean is a weighted average of the 
vector of prior means and the observation vector – with weights equal to the share of prior or 
sample precision in the posterior (or final) precision. Thus E(θ|y; α) is a point (in Θ = Rn) that 
lies on the line segment between (α α ... α)ʹ and (y1 y2 ... yn).
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It is worth stressing that the conditional density f1(θ|y; α) follows from Bayes formula for 
any fixed α, so to this point the presented approach obeys coherence. However, the deeper 
parameter (the prior mean α) is unknown, so there are two possible ways of treating it. On 
the sampling theory grounds (like in the EB approach) some point estimate α̂  is inserted into 
f1(θ|y; α), which results in p∗(θ|y) = f1(θ|y, α = α̂) . In our example we get 

	 p∗(θ|y) = f n
N

(
θ|θ̂EB,

1
c−1 + d−1 In

)
,	

where

	 α̂ = ȳ =
1
n

e′ny, θ̂EB = wyen + (1 − w)y.	

Three points are worth mentioning. Firstly, uncertainty about α is not fully taken into ac-
count. Secondly, p*(θ|y) is not the posterior density, because the conditional prior mean has 
been replaced by the sample average. Thus, coherency is violated despite the use of Bayes 
formula at the initial step of this statistical procedure (which can be called quasi-Bayesian). 
Thirdly, within the sampling theory approach, θ̂EB  is a natural point estimate of the vector of 
random effects. It has the “shrinking” property, since the measurement average yi correspond-
ing to θi is “shrunk” towards the overall average of measurements. So, in θ̂EB  all observations 
are used to estimate θi, not only observations related to this particular effect. While incoherence 
is a crucial deficiency from the Bayesian point of view, shrinkage estimators have interesting 
sampling properties. It is therefore important to provide Bayesian interpretation and justifica-
tion of conducting inference on the basis of p*(θ|y).

We seek for the sampling density p̃(y|θ) and the prior density p̃(θ) that lead to the Bayesian 
model p̃(y, θ) = p̃(y|θ)p̃(θ)  characterised by the joint density of the form

	 p̃(y, θ) = p(y|θ)p(θ|α = α̂) 	

	 ∝ g(y; θ) f0(θ; α̂) = f n
N(y|θ, cIn) f n

N (θ|ȳen, dIn)	
which results in

	 p∗(θ|y) = f1(θ|y, α = α̂) ∝ g(y; θ) f0(θ; α̂)	

as the true posterior p̃(θ|y). Elementary calculations show that

	 p̃(y, θ) ∝ f n
N

y|θ,
(
1
c

In +
1

dn
ene′n
)−1 exp

(
− 1

2d
θ′Mθ

)
,	

	 p̃(θ) =
∫

Y

p̃(y, θ) dy ∝ exp
(
− 1

2d
θ′Mθ

)
, M = In −

1
n

ene′n,	

	
p̃(y|θ) = p̃(y, θ)

p̃(θ)
= f n

N

(
y|θ, c

(
In −

c
n(c + d)

ene′n
))
.
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Since M is an idempotent singular matrix, the true prior  is improper, but σ-finite. It is 
informative, as it favours approximate equality θ1 ≈ … ≈ θn. In fact, this prior deserves more 
attention. Consider the non-singular linear transformation of θ into (θ̄, η) , where θ̄ = e′nθ/n  and 
ηi = θi − θ̄  (i = 1,…, n − 1). Since θ′Mθ = η′(In−1 + en−1e′n−1)η, p̃(θ) leads to p̃(θ̄, η) = p̃(θ̄)p̃(η)  

with p̃(θ̄) constant and p̃(η) = f n−1
N

(
η|0, d

(
In−1 − 1

nen−1e′n−1

)−1)
. The prior of θ̄ ∈ R  is improper 

uniform, but η, the vector of n − 1 deviations θi − θ̄ , is a priori normally distributed around 0. 
The sampling density p̃(y|θ) is different from p(y|θ). The true conditional distribution is nor-
mal, like the initially declared one, but it assumes that the observations are equally correlated 
(instead of being independent). The true sampling covariance matrix leads to the same correla-
tion coefficient for each pair of observations: 

	 C̃orr(yi, yj |θ) = −
c

(n − 1)c + nd
(i �= j), 	

which tends to zero when n increases; p̃(y|θ) practically coincides with p (y|θ) when n is suf-
ficiently large. However, we cannot use the standard Bayesian asymptotic argument to say 
that the prior does not matter when n is large, because θ is of dimension n, which is not fixed. 
Thus the full Bayesian justification of p*(θ|y), even asymptotic, requires considering the prior 
specification as well. Intuitively, p̃(θ) is a very reasonable prior. It explains shrinking through 
giving equal random effects the highest prior chance without introducing any prior information 
about the average value of all n random effects. In order to show how such prior distribution of 
individual effects can appear within the fully Bayesian approach, we now consider the Bayes-
ian normal hierarchical model, which introduces one more level – the normal prior distribution 
of α. 

If we assume that

	 p(y|θ) = f n
N (y|θ, cIn), p(θ|α) = f n

N (θ|αen, dIn), p(α) = f 1
N (α|a, ν),	

we can write 

	 p(θ) =
+∞∫

−∞

p(θ|α)p(α) dα = f n
N(θ|aen, dIn + νene′n),	

	 p(θ|y) ∝ p(y|θ)p(θ) = f n
N(y|θ, cIn)p(θ) 	

or, equivalently,

	 p(θ|y) =
+∞∫

−∞

p(θ|y, α)p(α|y) dα =
+∞∫

−∞

f1(θ|y;α)p(α|y) dα,	

where 

	 p(α|y) = f 1
N

α
∣∣∣∣∣∣

(
n

c + d
+

1
ν

)−1 ( n
c + d

ȳ +
a
ν

)
,

(
n

c + d
+

1
ν

)−1 .	
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Since we use the Bayesian approach, where all unknown elements of the statistical model 
are random variables, it is important to distinguish fixed and random (individual) effects in 
a Bayesian sense. We use the definition of Koop, Osiewalski and Steel (1997), who call effects 
fixed if they are marginally independent and random if they are not. In our example effects θi are 
only conditionally independent (given α), but they are marginally dependent – as it is clear from 
the non-diagonal covariance matrix of the marginal prior p(θ). This definition can be extended 
to σ-finite measures (improper priors). If p(θ) = p(θ1)p(θ2) … p(θn), then θi are fixed effects, 
otherwise they are random. Note that p̃(θ) ∝ exp

(
− 1

2d θ
′Mθ
)
 cannot be presented as a product 

of σ-finite measures of individual θi, therefore this improper prior describes random effects – 
similarly as the proper prior p(θ) does.

Finally, we obtain the marginal posterior density of random effects:

	

p(θ|y) = f n
N

θ|(1 − w)y + w
(

n
c + d

+
1
ν

)−1 ( n
c + d

ȳ +
a
ν

)
en,

cd
c + d

In + w2
(

n
c + d

+
1
ν

)−1

ene′n

 . 	

If ν−1 = 0, then p (α) ≈ const, the marginal prior of θ is p(θ) ≈ p̃(θ)  and the posterior is: 

	 p(θ|y) ≈ f n
N

(
θ|θ̂EB,

c
c + d

(
dIn +

c
n

ene′n
))
.	

Note that the flat prior of α leads to the informative improper marginal prior p̃(θ) obtained 
earlier. However, the above presented posterior p(θ|y) has a different covariance matrix than 
p̃(θ|y) = p∗(θ|y) = f n

N

(
θ|θ̂EB,

cd
c+d In
)
; the additional term c2

n(c+d) ene′n  in the posterior covariance 
matrix reflects uncertainty about α. If both ν and n are large enough, then our fully Bayesian 
and quasi-Bayesian posteriors approximately coincide: p(θ|y) ≈ p*(θ|y) and, thus, small-sample 
incoherence does not matter. 

4.	 Concluding remarks
In order to somehow validate the use of data-based “priors” (met in incoherent, quasi-Bayesian 
approaches), a formal method has been proposed in this paper. It amounts to defining and exam-
ining the Bayesian model that coherently generates the same posterior distribution as the “pos-
terior” obtained in the original sampling model coupled with the data-based “prior”. Although 
the method is general, only in simple cases it can lead to the closed forms of the true sampling 
model and the true prior. Therefore, our example includes a normal sampling model with a nor-
mal prior structure, always with known variance. The unknown (estimated) prior variance case, 
fundamental for the parametric empirical Bayes, is left for future research. 

As a by-product of our research, we have obtained an important prior structure that favours 
parameters’ equality. This prior is completely uninformative (improper uniform) about the param-
eters’ average, but it is quite informative (proper normal) about the deviations from the average.
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